Toggle light / dark theme

Your microbiota’s previous dining experiences may make new diets less effective

Struggling with your diet? Your microbiota could be to blame.


Your microbiota may not be on your side as you try improving your diet this New Year’s. In a study published December 29 in Cell Host & Microbe, researchers explore why mice that switch from an unrestricted American diet to a healthy, calorie-restricted, plant-based diet don’t have an immediate response to their new program. They found that certain human gut bacteria need to be lost for a diet plan to be successful.

“If we are to prescribe a to improve someone’s health, it’s important that we understand what help control those beneficial effects,” says Jeffrey Gordon, Director of the Center for Genome Sciences and Systems Biology at Washington University in St. Louis and senior author of the paper. “And we’ve found a way to mine the gut microbial communities of different humans to identify the organisms that help promote the effects of a particular diet in ways that might be beneficial.”

In order to study how human dietary practices influence the and how a microbiota conditioned with one dietary lifestyle responds to a new prescribed diet, Gordon and his collaborators first took fecal samples from people who followed a calorie-restricted, plant-rich diet and samples from people who followed a typical, unrestricted American diet. The researchers found that people who followed the restricted, plant-rich diet had a more diverse microbiota.

Synthetic Stem Cells Found Comparable To Natural Stem Cells In Therapeutic Benefits But With Reduced Risks

Nice.


Stem cell treatments involve some serious health risks for the patients and are very expensive. A new alternative developed for patients with health problems may be a game-changer as a team of researchers has developed synthetic stem cells, which prove to be as efficient as the regular ones. ( NC State University )

A team of researchers made a significant breakthrough which will help patients with heart problems all over the world. The scientists managed to create synthetic stem cells, which can help the heart tissue regenerate just as well as normal stem cells, while also avoiding the complications associated with them.

Promising Results

A team of American and Chinese researchers joined efforts in order to provide a better treatment solution for people with heart problems.

This Mobile Ultrasound Startup Is Reshaping A $6 Billion Healthcare Market

(Photo courtesy of Clarius Mobile Health)

The ultrasound market currently stands as a $6 billion global industry.

Contrary to popular perception, the use of ultrasounds for women’s health and pregnancy follow-ups only represents less than 20% of the overall use for healthcare. For example, a diagnostic ultrasound is routinely used to diagnose an assortment of healthcare conditions such as cancer, gall stones, and cardiovascular diseases.

Losing body fat could be facilitated

Time to work off that Chritmas Turkey bigsmile


Making muscles burn more fat and less glucose can increase exercise endurance, but could simultaneously cause diabetes, says a team of scientists from Baylor College of Medicine and other institutions.

Mouse muscles use (carbohydrate) as fuel when the animals are awake and active and switch to fat (lipid) when they are asleep. The team discovered that disrupting this natural cycle may lead to diabetes but, surprisingly, can also enhance exercise endurance. The switch is controlled by a molecule called histone deacetylase 3, or HDAC3. This finding opens the possibility of selecting the right time to exercise for losing body fat but also raises the concern of using HDAC inhibitors as doping drugs for endurance exercise. The study appears in Nature Medicine.

“How the uses glucose is regulated by its internal that anticipates the level of its activity during the day and at night,” said senior author Dr. Zheng Sun, assistant professor of medicine—diabetes, endocrinology and metabolism, and of molecular and cellular biology at Baylor. “The circadian clock works by turning certain genes on and off as the 24-hour cycle progresses. HDAC3 is a key connection between the circadian clock and gene expression. Our previous work showed that HDAC3 helps the liver alternate between producing glucose and producing lipid. In this work, we studied how HDAC3 controls the use of different fuels in .”

CellAge Campaign Q&A: Is It Safe To Remove Senescent Cells? | Lifespan.io

Is it safe to remove senescent cells? This is a common question we hear when talking about senolytic therapies designed to remove these problem cells that accumulate with age and play havoc with the body and its ability to repair.


Mantas from CellAge answers a question from one of our readers about senescent cell removal therapy. The removal of senescent cells has become a very hot topic this year with numerous experiments showing positive results for health and disease mitigation.

Check out the campaign at Lifespan.io and donate to a better healthier future:

https://www.lifespan.io/campaigns/cellage-targeting-senescen…c-biology/

Classifying Aging As a Disease: The Role of Microbes

The body is under constant invasion by microbes so rejuvenation of the immune system and reduction of imflammation is a big priority for rejuvenation biotechnology.


Recent publications have proposed that aging should be classified as a disease (Bulterijs et al., 2015; Zhavoronkov and Bhullar, 2015; Zhavoronkov and Moskalev, 2016). The goal of this manuscript is not to dispute these claims, but rather to suggest that when classifying aging as a disease, it is important to include the contribution of microbes.

As recently as ~115 years ago, more than half of all deaths were caused by infectious diseases, including pneumonia, influenza, tuberculosis, gastrointestinal infections, and diphtheria (Jones et al., 2012). Since then, the establishment of public health departments that focused on improved sanitation and hygiene, and the introduction of antibiotics and vaccines allowed for a dramatic decrease in infectious disease-related mortality (Report, 1999). In 2010, the death rate for infectious diseases was reduced to 3% (Jones et al., 2012). Simultaneously, as infectious disease-related mortality rates have decreased, global lifespan has increased from ~30 to ~70 years (Riley, 2005).

Because death rates due to infectious diseases have been reduced to very low levels, we’ve forgotten about the adverse effects of microbes on our existence. The fact is, we live in a microbial world. Although there are currently ~7 billion people, in contrast, the total number of prokaryotes and viruses have been estimated at 1030 and 1031, respectively (Whitman et al., 1998; Duerkop et al., 2014). Even without including other microbes (e.g., fungi, protozoa), humans are outnumbered by more than 1021 to 1! All of these microorganisms aren’t detrimental to human health, but more than 1400 microbial species have been shown to be pathogenic (Taylor et al., 2001).

Bionic pancreas system manages blood sugar levels in patients with type 1 diabetes living at home

The bionic pancreas system developed by Boston University (BU) investigators proved better than either conventional or sensor-augmented insulin pump therapy at managing blood sugar levels in patients with type 1 diabetes living at home, with no restrictions, over 11 days. The report of a clinical trial led by a Massachusetts General Hospital (MGH) physician is receiving advance online publication in The Lancet.

“For study participants living at home without limitations on their activity and diet, the bionic pancreas successfully reduced average blood glucose, while at the same time decreasing the risk of hypoglycemia,” says Steven Russell, MD, PhD, of the MGH Diabetes Unit. “This system requires no information other than the patient’s body weight to start, so it will require much less time and effort by health care providers to initiate treatment. And since no carbohydrate counting is required, it significantly reduces the burden on patients associated with diabetes management.”

Developed by Edward Damiano, PhD, and Firas El-Khatib, PhD, of the BU Department of Biomedical Engineering, the bionic pancreas controls patients’ blood sugar with both insulin and glucagon, a hormone that increases glucose levels. After a 2010 clinical trial confirmed that the original version of the device could maintain near-normal blood sugar levels for more than 24 hours in adult patients, two follow-up trials — reported in a 2014 New England Journal of Medicine paper — showed that an updated version of the system successfully controlled blood sugar levels in adults and adolescents for five days. Another follow-up trial published in The Lancet Diabetes and Endocrinology in 2016 showed it could do the same for children as young as 6 years of age.

/* */