Toggle light / dark theme

Hmmm; I see a bright future for this. No more surgeries by plastic surgeons? possibly?


Scientists at MIT, Massachusetts General Hospital, Living Proof, and Olivo Labs have developed a new material that can temporarily protect and tighten skin, and smooth wrinkles. With further development, it could also be used to deliver drugs to help treat skin conditions such as eczema and other types of dermatitis.

The material, a silicone-based polymer that could be applied on the as a thin, imperceptible coating, mimics the mechanical and elastic properties of healthy, youthful skin. In tests with human subjects, the researchers found that the material was able to reshape “eye bags” under the lower eyelids and also enhance skin hydration. This type of “second skin” could also be adapted to provide long-lasting ultraviolet protection, the researchers say.

“It’s an invisible layer that can provide a barrier, provide cosmetic improvement, and potentially deliver a drug locally to the area that’s being treated. Those three things together could really make it ideal for use in humans,” says Daniel Anderson, an associate professor in MIT’s Department of Chemical Engineering and a member of MIT’s Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science (IMES).

I do love and believe in the benefits of 3D printing; however, as a technologist and concerned informed citizen I do worry about this technology getting the hands of drug lords, terrorists, and other criminals. With Medical 3D printing; illegal drug manufacturing can change overnight and expanded to new levels of mass production. Also, illegal weapon production can be enhanced as well with 3D printing.

At this point, law enforcement in 1st and 2nd world countries are going to face harder times than they ever have in the recent past and before. 3D Printing and AI are truly going to take an already difficult situation for government and their law enforcement teams extremely tough in the coming 3 to 5 years; and hope they and tech come together to figure out a good go forward plan to ensure right benefits are received and progress not slowed down while keeping everyone safe.


Materialise incorporates more than 25 years of 3D printing experience into a range of software solutions and 3D printing services, which together form the backbone of the 3D printing industry. Materialise’s open and flexible solutions enable players in a wide variety of industries, including healthcare, automotive, aerospace, art and design, and consumer goods, to build innovative 3D printing applications that aim to make the world a better and healthier place.

Fried Vancraen, CEO of Materialise – recently called upon industry stakeholders to come to an agreement for a common standard for measuring the clinical, economical and patient benefits of medical 3D printing.

Garage startup (credit: Chase Dittmer)

By Director of UWA Centre for Software Practice, University of Western Australia

Pharmaceutical companies typically develop new drugs with thousands of staff and budgets that run into the billions of dollars. One estimate puts the cost of bringing a new drug to market at $2.6 billion with others suggesting that it could be double that cost at $5 billion.

One man, Professor Atul Butte, director of the University of California Institute of Computational Health Sciences, believes that like other Silicon Valley startups, almost anyone can bring a drug to market from their garage with just a computer, the internet, and freely available data.

In a talk given at the Science on the Swan conference held in Perth this week, Professor Butte outlined the process for an audience of local and international scientists and medics.

Interesting approach.


If you’re at all interested in your health, it’s likely you’ve joined the 20 percent of Americans who’ve incorporated fitness trackers into their daily ensemble. From monitoring steps and daily activity to sleep, an ever-growing number of devices are tracking and analyzing our body’s data in an effort to make us better.

But how good is this tracking? Despite noble intentions, the scientific reality is that much of the data these trackers provide is insufficient and inaccurate — and in turn, are not as effective as they promise.

This is especially true when it comes to sleep. Sleep scientists have looked at sleep wearables, like Fitbit and Jawbone, with skepticism — and for good reason. While the devices claim to monitor and help you sleep, scientific precision isn’t guaranteed.

Today, we’re announcing a new series of workshops and an interagency working group to learn more about the benefits and risks of artificial intelligence.

There is a lot of excitement about artificial intelligence (AI) and how to create computers capable of intelligent behavior. After years of steady but slow progress on making computers “smarter” at everyday tasks, a series of breakthroughs in the research community and industry have recently spurred momentum and investment in the development of this field.

Today’s AI is confined to narrow, specific tasks, and isn’t anything like the general, adaptable intelligence that humans exhibit. Despite this, AI’s influence on the world is growing. The rate of progress we have seen will have broad implications for fields ranging from healthcare to image- and voice-recognition. In healthcare, the President’s Precision Medicine Initiative and the Cancer Moonshot will rely on AI to find patterns in medical data and, ultimately, to help doctors diagnose diseases and suggest treatments to improve patient care and health outcomes.

Read more

A groundbreaking trial to see if it is possible to regenerate the brains of dead people, has won approval from health watchdogs.

A biotech company in the US has been granted ethical permission to recruit 20 patients who have been declared clinically dead from a traumatic brain injury, to test whether parts of their central nervous system can be brought back to life.

Scientists will use a combination of therapies, which include injecting the brain with stem cells and a cocktail of peptides, as well as deploying lasers and nerve stimulation techniques which have been shown to bring patients out of comas.

Read more

Silicon Valley’s newest valley member; wonder if Google or eBay will send a “Welcome Basket” to the FDA?


Helmy Eltoukhy’s company is on a roll. The start-up is a leading contender in the crowded field of firms working on “liquid biopsy” tests that aim to be able to tell in a single blood draw whether a person has cancer.

Venture investors are backing Guardant Health to the tune of nearly $200 million. Leading medical centers are testing its technology. And earlier this month, it presented promising data on how well its screening tool, which works by scanning for tiny DNA fragments shed by dying tumor cells, worked on an initial group of 10,000 patients with late-stage cancers.

Just one thing is holding the company back: Guardant Health has yet to get approval from Food and Drug Administration.

Russia’s ongoing nuclear fallout challenges.


MUSLYUMOVO, Russia (AP) — At first glance, Gilani Dambaev looks like a healthy 60-year-old man and the river flowing past his rural family home appears pristine. But Dambaev is riddled with diseases that his doctors link to a lifetime’s exposure to excessive radiation, and the Geiger counter beeps loudly as a reporter strolls down to the muddy riverbank.

Some 50 kilometers (30 miles) upstream from Dambaev’s crumbling village lies Mayak, a nuclear complex that has been responsible for at least two of the country’s biggest radioactive accidents. Worse, environmentalists say, is the facility’s decades-old record of using the Arctic-bound waters of the Techa River to dump waste from reprocessing spent nuclear fuel, hundreds of tons of which is imported annually from neighboring nations.

The results can be felt in every aching household along the Techa, where doctors record rates of chromosomal abnormalities, birth defects and cancers vastly higher than the Russian average — and citizens such as Dambaev are left to rue the government’s failure over four decades to admit the danger.

Nice; however, I see also 3D printing along with machine learning being part of any cosmetic procedures and surgeries.


With an ever-increasing volume of electronic data being collected by the healthcare system, researchers are exploring the use of machine learning—a subfield of artificial intelligence—to improve medical care and patient outcomes. An overview of machine learning and some of the ways it could contribute to advancements in plastic surgery are presented in a special topic article in the May issue of Plastic and Reconstructive Surgery®, the official medical journal of the American Society of Plastic Surgeons (ASPS).

“Machine learning has the potential to become a powerful tool in plastic surgery, allowing surgeons to harness complex clinical data to help guide key clinical decision-making,” write Dr. Jonathan Kanevsky of McGill University, Montreal, and colleagues. They highlight some key areas in which machine learning and “Big Data” could contribute to progress in plastic and reconstructive surgery.

Machine Learning Shows Promise in Plastic Surgery Research and Practice

Machine learning analyzes historical data to develop algorithms capable of knowledge acquisition. Dr. Kanevsky and coauthors write, “Machine learning has already been applied, with great success, to process large amounts of complex data in medicine and surgery.” Projects with healthcare applications include the IBM Watson Health cognitive computing system and the American College of Surgeons’ National Surgical Quality Improvement Program.