Toggle light / dark theme

Dubbed ‘antibiotic apocalypse’, the antibiotic resistant superbugs have become a massive cause for concern for health professionals as their numbers continue to rise. Such is the worry around antibiotic superbugs that experts believe that they will claim 10 million lives by 2050, with 700,000 people dying a year after catching the infections, according to a recent report from the American Chemical Society’s Enviromental Science and Technology Journal. Humans, especially in the West, have become so reliant on antibiotics to help cure illnesses that many of the bacteria that they are trying to fight have become resistant to the drugs through evolution.

A little bit of norovirus—the highly infectious microbe that causes about 20 million cases of food poisoning in the United States each year—goes a long way. Just 10 particles of the virus can cause illness in humans. A team of University of Arizona researchers has created a simple, portable and inexpensive method for detecting extremely low levels of norovirus.

Jeong-Yeol Yoon, a researcher in the Department of Biomedical Engineering; Soo Chung, a biosystems engineering doctoral student who works in Yoon’s Biosensors Lab; and Kelly A. Reynolds, Chair of the Department of Community, Environment and Policy in the Mel & Enid Zuckerman College of Public Health, led the project. The team published their results in ACS Omega, the official journal of the American Chemical Society, and Yoon is presenting the research at the ACS Fall 2019 National Meeting & Exposition in San Diego this week.

“Advances in rapid monitoring of human viruses in water are essential for protecting public health,” Reynolds said. “This rapid, low-cost water quality monitoring technology could be a transformational tool for reducing both local and global disease burdens.”

In one of the largest studies of its kind, researchers at Orlando Health are making new progress in finding ways to detect a traumatic yet sinister brain injury—and getting closer to preventing further damage.

Subconcussive injuries often show no symptoms or immediate effects, but can cause wear and tear on the brain over time with repeated injuries. The latest study, published in the journal BMJ Paediatrics Open, includes more than 700 emergency room patients—children and adults. The study gets us closer to developing a standard blood test to spot these injuries as early as possible.

“A unique feature of this study is that it includes patients who hit their heads but have no symptoms,” said Linda Papa, MD, lead author of the study and emergency medicine doctor at Orlando Health. “This group is rarely—if ever—included in biomarker studies.”

ATLANTA—Targeting specific areas of the measles virus polymerase, a protein complex that copies the viral genome, can effectively fight the measles virus and be used as an approach to developing new antiviral drugs to treat the serious infectious disease, according to a study by the Institute for Biomedical Sciences at Georgia State University published in PLoS Pathogens.

Measles is a highly contagious virus that can lead to serious health complications and death. It begins with a fever, cough, runny nose and red eyes followed by a rash of tiny, red spots that starts at the head and spreads to the rest of the body. Although declared eliminated in the United States in 2000, the Centers for Disease Control and Prevention says the U.S. is experiencing the greatest number of measles cases reported since the early 1990s.

While an effective vaccine exists, there has been a steady decline in the number of people being vaccinated against the measles virus. Most new cases were among unvaccinated individuals, making the development of an effective treatment strategy complementing vaccination a public health priority. There are no antivirals licensed to treat measles. The new study identified a novel protein interface in the polymerase complex that is pivotal for the regulation of polymerase activity, providing a new objective for target-based antiviral drug discovery.

A doctor who treated survivors of a mysterious nuclear accident in Russia was told that the radioactive isotope cesium-137 must have made its way into their body due to “Fukushima crabs,” according to CNN.

The August 8 incident at the Nyonoksa testing range on a platform in the White Sea has not yet been fully explained, but at least seven individuals have been reported dead after what nuclear agency Rosatom described as an accident involving an “isotope power source for a liquid-fuelled rocket engine.” It later emerged that the incident was serious enough that Russian officials in Arkhangelsk wavered over the issue of whether to issue evacuation orders for nearby towns. While several of the personnel deaths were due to an onsite explosion, the Washington Post reported this week (citing the Novaya Gazeta newspaper) that two individuals had died of radiation exposure before they could be taken to Moscow for treatment.

On humans are many, and widespread across Earth. Respiratory and cardiovascular effects of air pollution have long been recognised, and account for the majority of air pollution-related deaths. There is also a strong link between poor air quality and the incidence of lung cancer.

Globally, ambient (outdoor) air pollution causes an estimated 25 per cent of all adult deaths from heart disease, 24 per cent from stroke, 43 per cent from chronic obstructive pulmonary disease and 29 per cent from lung cancer. Household (indoor) air pollution also leads to a wide variety of similar diseases and is one of the top five causes for premature death across the world. Current estimates put the death toll from household and ambient air pollution combined at 7 million deaths a year.

The following is a white paper on the Metagame concept and meme. Metagame means “above” or “beyond” the game. The core idea of the Metagame is that voluntary participation in life itself constitutes a Divine Game with rules, purpose, and feedback. The Game asserts the existence of a Divine Science at the original root of the philosophical and religious tradition and at the root of coordinative social self organization. The Metagame is a shared learning community of people who are involved in research or creative projects that deal with these areas. Such areas are important to the health of the social fabric. Herein, we propose two phases and explore several areas of research that may be relevant to the Game.

Introduction:

“According to our social science, we can be or become wise in all matters of secondary importance, but we have to be resigned to utter ignorance in the most important respect: we cannot have any knowledge regarding the ultimate principles of our choices, i.e., regarding their soundness or unsoundness; our ultimate principles have no other support than our arbitrary and hence blind preferences. We are then in the position of beings who are sane and sober when engaged in trivial business and who gamble like madmen when confronted with serious issues — retail sanity and wholesale madness.” — Leo Strauss, Natural Right and History (1953)

The U.S. Defense Advanced Research Projects Agency (DARPA) kicked off the Subterranean Challenge in December 2017, with the goal of equipping future warfighters and first responders with tools to rapidly map, navigate, and search hazardous underground environments. The final winner of the four-event competition won’t be selected until 2021, but Team Explorer from Carnegie Mellon University and Oregon State University managed to best rivals for the initial prize.

On four occasions during the eight-day Tunnel Circuit event, which concluded today, each team deployed multiple robots into National Institute for Occupational Safety and Health research mines in South Park Township, Pennsylvania, tasked with autonomously navigating mud and water and communicating with each other and a base station for an hour at a time as they searched for objects. Team Explorer’s roughly 30 university faculty, students, and staff members leveraged two ground robots and two drones to find 25 artifacts in its two best runs (14 more than any other team), managing to identify and locate a backpack within 20 centimeters of its actual position.

“Mobility was a big advantage for us,” said team co-leader Sebastian Scherer, associate research professor in Carnegie Mellon’s Robotics Institute, in a statement. “The testing [prior to the event, at Tour-Ed Mine in Tarentum, Pennsylvania] was brutal at the end, but it paid off in the end. We were prepared for this … We had big wheels and lots of power, and autonomy that just wouldn’t quit.”