Toggle light / dark theme

Circa 2020


On 8 May 2020, the Institute of Agrifood Research and Technology (IRTA) reported the case of the first cat infected with SARS-CoV-2 in Spain. It was a 4-year-old cat called Negrito, who lived with a family affected by COVID-19, with one case of death.

Coinciding with these facts, the animal presented severe respiratory difficulties and was taken to a veterinary hospital in Badalona (Barcelona), where it was diagnosed with hypertrophic cardiomyopathy. Due to a terminal condition the hospital decided to do a humanitarian euthanasia.

The necropsy, performed at the High Biosafety Level Laboratories of the Animal Health Research Center (CReSA) at IRTA, confirmed that Negrito suffered from feline hypertrophic cardiomyopathy and had no other lesions or symptoms compatible with a coronavirus infection.

Private sector solutions to major social problems — stephanie smith — director, humanitarian & development, mastercard.


Stephanie Smith is a Director, in the Humanitarian & Development group, at Mastercard (https://www.mastercard.us), the American multinational financial services corporation.

Stephanie is responsible for operations of the Humanitarian & Development group at Mastercard, and ensuring the team’s efficient, consistent, and effective delivery against their vision to provide digital tools and access for education, health, commerce, and other critical services for marginalized individuals and communities. The Humanitarian & Development group is focused on driving commercially sustainable social impact in collaboration with governments, NGOs, and other private sector companies.

Polymer semiconductors—materials that have been made soft and stretchy but still able to conduct electricity—hold promise for future electronics that can be integrated within the body, including disease detectors and health monitors.

Yet until now, scientists and engineers have been unable to give these polymers certain advanced features, like the ability to sense biochemicals, without disrupting their functionality altogether.

Researchers at the Pritzker School of Molecular Engineering (PME) have developed a new strategy to overcome that limitation. Called “click-to-polymer” or CLIP, this approach uses a chemical reaction to attach new functional units onto .

Bio-Digital Twins, Quantum Computing, And Precision Medicine — Mr. Kazuhiro Gomi, President and CEO, and Dr. Joe Alexander, MD, Ph.D., Director, Medical and Health Informatics (MEI) Lab, NTT Research.


Mr. Kazuhiro Gomi, is President and CEO of NTT Research (https://ntt-research.com/), a division of The Nippon Telegraph and Telephone Corporation, commonly known as NTT (https://www.global.ntt/), a Japanese telecommunications company headquartered in Tokyo, Japan. Mr. Gomi has been at NTT for more than 30 years and was involved in product management/product development activities at the beginning of his tenure. In September of 2009, Mr. Gomi was first named to the Global Telecoms Business Power100 — a list of the 100 most powerful and influential people in the telecoms industry. He was the CEO of NTT America Inc. from 2010 to 2019 and also served on the Board of Directors at NTT Communications from 2012 to 2019. Mr. Gomi received a Masters of Science in Industrial Engineering from the University of Illinois at Urbana-Champaign, and a Master of Science in Electrical Engineering from Keio University, Tokyo. Mr. Gomi is a member of the board at US Japan Council, a non-profit organization aimed at fostering a better relationship between the US and Japan.

Dr. Joe Alexander, is Director of the Medical and Health Informatics (MEI) Lab at NTT Research, where he oversees the MEI Lab research in multi-scale Precision Cardiology platforms such as the cardiovascular bio-digital twin, as well as heart-on-a-chip technology, specifically aimed at developing the infrastructure for a digital replica of an individual’s heart. In addition, the MEI Lab is working on nano-and micro-scale sensors and electrodes, other organ-on-a-chip micro-fluidics technologies, as well as wearable and remote sensing to support future bio-digital twin applications.

Sony has announced a follow-up product to the Reon Pocket, the app-controlled “wearable air conditioner” it released last year after crowdfunding it on the company’s own platform. The Reon Pocket 2 looks more or less the same as the original model, but the newly designed internals can achieve up to twice the level of heat absorption, according to Sony, resulting in more powerful cooling performance. Sony also says that it’s improved the sweat-proofing in the Reon Pocket 2, making it more suitable for light exercise situations.


Just in time for summer.

Google uses artificial intelligence technology to find millions of buildings on the satellite map that were previously difficult to locate. These can now be used for humanitarian aid or other purposes. Google utilized its building detection model (Continental-Scale Building Detection from High Resolution Satellite Imagery) to create an Open Buildings dataset, containing locations and footprints of 516 million buildings with coverage across most African continent countries.

In this data set, there are millions of buildings that have not been discovered in the past. These newly-discovered building materials will help the outside world understand African populations and where they live, facilitating health care services such as education or vaccination to their communities.

Google’s team of developers built a training set for their building detection model by manually labeling 1.75 million buildings in 100k images to make the most accurate identification possible, even when dealing with rural or urban environments that have vastly different properties and features. The need to identify what kind of dwelling place is being captured was especially difficult during scoping missions in remote areas where natural landmarks were plentiful. At the same time, dense surroundings made it hard to differentiate between multiple structures on an aerial image at once.

This study builds on an earlier paper by the Rothstein lab that looked at the most common genetic cause of ALS, a mutation in the C9orf72 gene (also referred to as the “C9 mutation”). There, they showed that the C9 mutation produced defects in a structure called the nuclear pore that is responsible for moving proteins and other molecules in and out of the nucleus of cells.


Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal degenerative disease affecting the nerve cells in the brain and spinal cord responsible for controlling voluntary muscle movement. “Sporadic” or non-inherited ALS, accounts for roughly 90% percent of cases, and 10% of cases are due to known genetic mutations. By studying lab-grown neurons derived from skin or blood cells from 10 normal controls, eight with an ALS causing mutation, and 17 with non-inherited ALS, researchers have found a possible starting point for the dysfunction that causes the disease. The study, which was published in Science Translational Medicine, was funded in part by the National Institute for Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health.

Using a library of ALS patient-derived , the research team led by Jeffrey Rothstein, M.D., Ph.D., at Johns Hopkins University School of Medicine, Baltimore, developed induced (iPSC)-derived neurons from the patients’ cultured cells to discover a common defect regardless of whether the cell came from persons with inherited or non-inherited ALS. They report that in ALS nerve cells, there is an accumulation of a protein called CHMP7 in the nucleus of cultured nerve cells as well as in ALS samples from the brain region that controls movement. Treatments that decrease the amount of CHMP7 in the cultured cells prevented a series of abnormalities that are characteristic of ALS.

“There is considerable interest in identifying new therapeutic targets for ALS, particularly for the sporadic form of the disorder,” said Amelie Gubitz, Ph.D., program director, NINDS. “Gene-targeting strategies like the one shown here now allow us to move from biological discovery straight to therapy development.”

Despite years of efforts, malaria remains a major health problem. The mosquito-borne parasitic disease sickens more than 200 million people every year and kills more than 400000, many of whom are children.


For the first time, scientists have shown that a new kind of genetic engineering can crash populations of malaria-spreading mosquitoes.

In the landmark study, published Wednesday in the journal Nature Communications, researchers placed the genetically modified mosquitoes in a special laboratory that simulated the conditions in sub-Saharan Africa, where they spread the deadly disease.

The male mosquitoes were engineered with a sequence of DNA known as a “gene drive” that can rapidly transmit a deleterious mutation that essentially wipes out populations of the insects.

Thrilled to see Paradromics’ $20M fund raise lead by the talented Dr. Amy Kruse! Paradromics is building a brain computer interface supported by DARPA’s Biologi… See More.


The investment demonstrates confidence in Paradromics as a well-positioned player in the $200 billion BCI therapy market. Last year, Paradromics successfully completed testing of its platform, demonstrating the largest ever electrical recording of cortical activity that exceeded more than 30000 electrode channels in sheep cortex. This recording allowed researchers to observe the brain activity of sheep in response to sound stimuli with high fidelity.

“We are combining the best of neural science and medical device engineering to create a robust and reliable platform for new clinical therapies,” said Paradromics CEO Matt Angle. “This funding round is a validation of both our technology and strategic vision in leading this important developing market.”

The current funding round follows $10M in early stage private funding as well as $15M of public funding from the National Institutes of Health (NIH) and the Department of Defense (DARPA).