Access to an online program that provides easily accessible, interactive, tailored healthy lifestyle and behavior change techniques is associated with better health-related quality of life among adult stroke survivors, according to new research from the University of Newcastle and Flinders University.
Stroke can lead to serious consequences for those that survive in terms of physical and cognitive disability. Improving lifestyle and health risk behaviors, including tobacco and alcohol use, physical activity, diet, depression, and anxiety, has the potential to significantly enhance stroke survivors’ quality of life.
Led by Dr. Ashleigh Guillaumier from the University of Newcastle and senior author Professor Billie Bonevski from Flinders University, the study, published in the journal PLOS Medicine, undertook a randomized control trial to evaluate the online program Prevent 2nd Stroke (P2S), which encourages users to set goals and monitor progress across various health risk areas.
Cigarette smoking is overwhelmingly the main cause of lung cancer, yet only a minority of smokers develop the disease. A study led by scientists at Albert Einstein College of Medicine and published online on April 11, 2022, in Nature Genetics suggests that some smokers may have robust mechanisms that protect them from lung cancer by limiting mutations. The findings could help identify those smokers who face an increased risk for the disease and therefore warrant especially close monitoring.
“This may prove to be an important step toward the prevention and early detection of lung cancer risk and away from the current herculean efforts needed to battle late-stage disease, where the majority of health expenditures and misery occur,” said Simon Spivack, M.D., M.P.H., a co-senior author of the study, professor of medicine, of epidemiology & population health, and of genetics at Einstein, and a pulmonologist at Montefiore Health System.
Combating Antibiotic-Resistant Bacteria — Dr. Erin Duffy, Ph.D., Chief of Research & Development, and Kevin Outterson, ESQ., Executive Director, CARB-X.
The Combating Antibiotic-Resistant Bacteria Biopharmaceutical Accelerator (CARB-X — https://carb-x.org/) is a global non-profit partnership accelerating antibacterial products to address drug-resistant bacteria, a leading cause of death around the world. 1.27 million deaths worldwide were attributed to resistant bacterial infections in 2019.
The CARB-X portfolio is the world’s most scientifically diverse, early development pipeline of new antibiotics, vaccines, rapid diagnostics and other products and represents the only global partnership that integrates solutions for the prevention, diagnosis and treatment of life-threatening bacterial infections, translating innovation from basic research to first-in-human clinical trials.
Dr. Erin Duffy, PhD., is Chief of Research & Development at CARB-X and she has two decades of drug-discovery and problem-solving experience in the antibiotic arena. She was previously with Rib-X Pharmaceuticals (now Melinta Therapeutics) where in increasing roles she helped to build and sustain a team of researchers that translated the company’s scientific platform into next-generation and novel antibiotics that target the ribosome. Her team’s most recent achievements include the de novo design and optimization of a completely new class of antibiotics, the pyrrolocytosines, which were supported in part by CARB-X. Prior to Rib-X, Erin was the Associate Director of Innovative Discovery Technologies at Achillion Pharmaceuticals, responsible for building the structure and computational teams and platform for their antiviral efforts. She began her industrial career at Pfizer Central Research, in Groton, Connecticut, where she joined a team of computational and structural drug designers in multiple therapeutic areas. Erin was trained formally at Yale University, where she became a physical-organic chemist focused on defining computationally how small molecules interact and react in the group of Professor William L. Jorgensen. She expanded her experience to large molecules under the mentorship of Professor Axel Brunger, whose group at Yale was transitioning to a mix of computational and laboratory structural biology.
Kevin Outterson, ESQ., is Executive Director of CARB-X and is a global thought leader on business models for antibiotic development and use. He is Professor of Law and N. Neil Pike Scholar of Health and Disability Law at Boston University School of Law, where he leads multi-disciplinary teams to solve global health issues. Professor Outterson is the Executive Director and Principal Investigator of CARB-X and a partner in DRIVE-AB (aka Driving Reinvestment In Research And Development And Responsible Antibiotic Use) a project composed of 15 public and 7 private partners from 12 countries that is funded by the Innovative Medicines Initiative (IMI) joint undertaking between the European Union and the European Pharmaceutical Industry Association (EFPIA). He also leads the Social Innovation on Drug Resistance program at Boston University.
“All too often we do not recognize the connection between the way we plan our cities and urban development and the health of the citizens who live in those communities. We must connect the dots.” — Dr. Mili Roy, Co-Chair, CAPE.
A physician’ for the environment group points out the connection between planning urban development and the health of its citizens.
People with type O-blood are considered “universal donors” because their blood doesn’t have any antigens or proteins, meaning anybody’s body will be able to accept it in an emergency.
But why are there different blood types? Researchers don’t fully know, but factors such as where someone’s ancestors are from and past infections which spurred protective mutations in the blood may have contributed to the diversity, according to Dr. Douglas Guggenheim, a hematologist with Penn Medicine. People with type O blood may get sicker with cholera, for example, while people with type A or B blood may be more likely to experience blood clotting issues. While our blood can’t keep up with the different biological or viral threats going around in real time, it may reflect what’s happened in the past.
“In short, it’s almost like the body has evolved around its environment in order to protect it as best as possible,” Guggenheim says.
For the first time ever, doctors have successfully transplanted a kidney from a pig to a human — and, they say, the organ functioned normally.
The procedure occurred between a genetically-altered pig and a brain dead human patient at NYU Langone Health, according to The New York Times. The pig was genetically engineered to grow a kidney that would be accepted by a human body. The organ was then attached to the patient’s blood vessels in the upper leg, outside of the abdomen, where the researchers observed it functioning normally.
“It was better than I think we even expected,” Dr. Robert Montgomery, director of the NYU Langone Transplant Institute, told the NYT. Montgomery helped perform the procedure in September and told the paper that it “looked like any transplant I’ve ever done from a living donor. A lot of kidneys from deceased people don’t work right away, and take days or weeks to start. This worked immediately.”
Genentech’s Gregory Rippon, M.D., associates a few different phrases with the challenging nature of Alzheimer’s disease drug development: “cautious optimism,” “steady progress,” “an exercise in per | Genentech has been working on gantenerumab for 20 years, and, while it’s tempting to try to rush the clinical process, the Roche unit is slowly but surely following the evidence.
Coming off multiple country approvals for his “patent free” Covid vaccine, Scientist, Researcher, Author, Science Explainer, Dr. Peter Hotez, MD, Ph.D. Baylor College of Medicine, drops by for an episode of Progress, Potential, And Possibilities.
Dr. Hotez is an internationally recognized physician-scientist with expertise in neglected tropical diseases and vaccine development. He leads the only product development partnership for developing new vaccines for hookworm, schistosomiasis and Chagas disease, and is just coming off a major win for emergency use approval of his team’s Corbevax protein sub-unit COVID-19 vaccine, of which he, and previous guest to the show, Dr. Maria Elena Bottazzi, were recently nominated for a Nobel Prize.
Dr. Hotez is the author of more than 400 original papers, as well as the books Forgotten People, Forgotten Diseases — The Neglected Tropical Diseases and Their Impact on Global Health and Development, Blue Marble Health — An Innovative Plan to Fight Diseases of the Poor amid Wealth, Vaccines Did Not Cause Rachel’s Autism: My Journey as a Vaccine Scientist, Pediatrician, and Autism Dad, and Preventing the Next Pandemic: Vaccine Diplomacy in a Time of Anti-science.
A pair of researchers working in the Personal Robotics Laboratory at Imperial College London has taught a robot to put a surgical gown on a supine mannequin. In their paper published in the journal Science Robotics, Fan Zhang and Yiannis Demiris described the approach they used to teach the robot to partially dress the mannequin. Júlia Borràs, with Institut de Robòtica i Informàtica Industrial, CSIC-UPC, has published a Focus piece in the same journal issue outlining the difficulties in getting robots to handle soft material and the work done by the researchers on this new effort.
As researchers and engineers continue to improve the state of robotics, one area has garnered a lot of attention—using robots to assist with health care. In this instance, the focus was on assisting patients in a hospital setting who have lost the use of their limbs. In such cases, dressing and undressing falls to healthcare workers. Teaching a robot to dress patients has proven to be challenging due to the nature of the soft materials used to make clothes. They change in a near infinite number of ways, making it difficult to teach a robot how to deal with them. To overcome this problem in a clearly defined setting, Zhang and Demiris used a new approach.
The setting was a simulated hospital room with a mannequin lying face up on a bed. Nearby was a hook affixed to the wall holding a surgical gown that is worn by pushing arms forward through sleeves and tying in the back. The task for the robot was to remove the gown from the hook, maneuver it to an optimal position, move to the bedside, identify the “patient” and its orientation and then place the gown on the patient by lifting each arm one at a time and pulling the gown over each in a natural way.
Walmart has teamed up with Zipline to launch a trial for an on-demand drone delivery service.
Early next year, Walmart will service customers within a 50-mile radius of their headquarters in Arkansas, promising to deliver health and wellness products within an hour of purchase. They hope to expand to include general merchandise in the future. If the trial is successful, it could be the start of a nationwide drone delivery service.
“Trial deliveries will take place near Walmart’s headquarters here in Northwest Arkansas using Zipline’s proprietary technology which is, simply put, really cool,” Tom Ward, a Senior VP at Walmart, wrote in a blog post. The stork-like delivery service would drop a package at your doorstep with a mini-parachute attached.