Toggle light / dark theme

The projected size of Barack Obama’s “stimulus package” is heading north, from hundreds of billions of dollars into the trillions. And the Obama program comes, of course, on top of the various Bush administration bailouts and commitments, estimated to run as high as $8.5 trillion.

Will this money be put to good use? That’s an important question for the new President, and an even more important question for America. The metric for all government spending ultimately comes down to a single query: What did you get for it?

If such spending was worth it, that’s great. If the country gets victory in war, or victory over economic catastrophe, well, obviously, it was worthwhile. The national interest should never be sacrificed on the altar of a balanced budget.

So let’s hope we get the most value possible for all that money–and all that red ink. Let’s hope we get a more prosperous nation and a cleaner earth. Let’s also hope we get a more secure population and a clear, strategic margin of safety for the United States. Yet how do we do all that?

There’s only one best way: Put space exploration at the center of the new stimulus package. That is, make space the spearhead rationale for the myriad technologies that will provide us with jobs, wealth, and vital knowhow in the future. By boldly going where no (hu)man has gone before, we will change life here on earth for the better.

To put it mildly, space was not high on the national agenda during 2008. But space and rocketry, broadly defined, are as important as ever. As Cold War arms-control theology fades, the practical value of missile defense–against superpowers, also against rogue states, such as Iran, and high-tech terrorist groups, such as Hezbollah and Hamas–becomes increasingly obvious. Clearly Obama agrees; it’s the new President, after all, who will be keeping pro-missile defense Robert Gates on the job at the Pentagon.

The bipartisan reality is that if missile offense is on the rise, then missile defense is surely a good idea. That’s why increasing funding for missile defense engages the attention of leading military powers around the world. And more signs appear, too, that the new administration is in that same strategic defense groove. A January 2 story from Bloomberg News, headlined “Obama Moves to Counter China With Pentagon-NASA Link,” points the way. As reported by Demian McLean, the incoming Obama administration is looking to better coordinate DOD and NASA; that only makes sense: After all, the Pentagon’s space expenditures, $22 billion in fiscal year 2008, are almost a third more than NASA’s. So it’s logical, as well as economical, to streamline the national space effort.

That’s good news, but Obama has the opportunity to do more. Much more.

Throughout history, exploration has been a powerful strategic tool. Both Spain and Portugal turned themselves into superpowers in the 15th and 16th century through overseas expansion. By contrast, China, which at the time had a technological edge over the Iberian states, chose not to explore and was put on the defensive. Ultimately, as we all know, China’s retrograde policies pushed the Middle Kingdom into a half-millennium-long tailspin.

Further, we might consider the enormous advantages that England reaped by colonizing a large portion of the world. Not only did Britain’s empire generate wealth for the homeland, albeit often cruelly, but it also inspired technological development at home. And in the world wars of the 20th century, Britain’s colonies, past and present, gave the mother country the “strategic depth” it needed for victory.

For their part, the Chinese seem to have absorbed these geostrategic lessons. They are determined now to be big players in space, as a matter of national grand strategy, independent of economic cycles. In 2003, the People’s Republic of China powered its first man into space, becoming only the third country to do so. And then, more ominously, in 2007, China shot down one of their own weather satellites, just to prove that they had robust satellite-killing capacity.

Thus the US and all the other space powers are on notice: In any possible war, the Chinese have the capacity to “blind” our satellites. And now they plan to put a man on the moon in the next decade. “The moon landing is an extremely challenging and sophisticated task,” declared Wang Zhaoyao, a spokesman for China’s space program, in September, “and it is also a strategically important technological field.”

India, the other emerging Asian superpower, is paying close attention to its rival across the Himalayas. Back in June, The Washington Times ran this thought-provoking headline: “China, India hasten arms race in space/U.S. dominance challenged.” According to the Times report, India, possessor of an extensive civilian satellite program, means to keep up with emerging space threats from China, by any means necessary. Army Chief of Staff Gen. Deepak Kapoor said that his country must “optimize space applications for military purposes,” adding, “the Chinese space program is expanding at an exponentially rapid pace in both offensive and defensive content.” In other words, India, like every other country, must compete–because the dangerous competition is there, like it or not.

India and China have fought wars in the past; they obviously see “milspace” as another potential theater of operations. And of course, Japan, Russia, Brazil, and the European Union all have their own space programs.

Space exploration, despite all the bonhomie about scientific and economic benefit for the common good, has always been driven by strategic competition. Beyond mere macho “bragging rights” about being first, countries have understood that controlling the high ground, or the high frontier, is a vital military imperative. So we, as a nation, might further consider the value of space surveillance and missile defense. It’s hard to imagine any permanent peace deal in the Middle East, for example, that does not include, as an additional safeguard, a significant commitment to missile and rocket defense, overseen by impervious space satellites. So if the U.S. and Israel, for example, aren’t there yet, well, they need to get there.

Americans, who have often hoped that space would be a demilitarized preserve for peaceful cooperation, need to understand that space, populated by humans and their machines, will be no different from earth, populated by humans and their machines. That is, every virtue, and every evil, that is evident down here will also be evident up there. If there have been, and will continue to be, arms races on earth, then there will be arms races in space. As we have seen, other countries are moving into space in a big way–and they will continue to do so, whether or not the U.S. participates.

Meanwhile, in the nearer term, if the Bush administration’s “forward strategy of freedom”–the neoconservative idea that we would make America safe by transforming the rest of the world–is no longer an operative policy, then we will, inevitably, fall back on “defense” as the key idea for making America safe.

But in the short run, of course, the dominant issue is the economy. Aside from the sometimes inconvenient reality that national defense must always come first, the historical record shows that high-tech space work is good for the economy; the list of spinoffs from NASA, spanning the last half-century, is long and lucrative.

Moreover, a great way to guarantee that the bailout/stimulus money is well spent is to link it to a specific goal–a goal which will in turn impose discipline on the spenders. During the New Deal, for example, there were many accusations of malfeasance against FDR’s “alphabet soup” of agencies, and yet the tangible reality, in the 30s, was that things were actually getting done. Jobs were created, and, just as more important, enduring projects were being built; from post offices to Hoover Dam to the Tennessee Valley Authority, America was transformed.

Even into the 50s and 60s, the federal government was spending money on ambitious and successful projects. The space program was one, but so was the interstate highway program, as well as that new government startup, ARPANET.

Indeed, it could be argued that one reason the federal government has grown less competent and more flabby over the last 30 years is the relative lack of “hard” Hamiltonian programs–that is, nuts and bolts, cement and circuitry–to provide a sense of bottom-line rigor to the spending process.

And so, for example, if America were to succeed in building a space elevator–in its essence a 22,000-mile cable, operating like a pulley, dangling down from a stationary satellite, a concept first put forth in the late 19th century–that would be a major driver for economic growth. Japan has plans for just such a space elevator; aren’t we getting a little tired of losing high-tech economic competitions to the Japanese?

So a robust space program would not only help protect America; it would also strengthen our technological economy.

But there’s more. In the long run, space spending would be good for the environment. Here’s why:

History, as well as common sense, tells us that the overall environmental footprint of the human race rises alongside wealth. That’s why, for example, the average American produces five times as much carbon dioxide per year as the average person dwelling anywhere else on earth. Even homeless Americans, according to an MIT study–and even the most scrupulously green Americans–produce twice as much CO2, per person, as the rest of the world. Around the planet, per capita carbon dioxide emissions closely track per capita income.

A holistic understanding of homo sapiens in his environment will acknowledge the stubbornly acquisitive and accretive reality of human nature. And so a truly enlightened environmental policy will acknowledge another blunt reality: that if the carrying capacity of the earth is finite, then it makes sense, ultimately, to move some of the population of the earth elsewhere–into the infinity of space.

The ZPG and NPG advocates have their own ideas, of course, but they don’t seem to be popular in America, let alone the world. But in the no-limits infinity of space, there is plenty of room for diversity and political experimentation in the final frontier, just as there were multiple opportunities in centuries past in the New World. The main variable is developing space-traveling capacity to get up there–to the moon, Mars, and beyond–to see what’s possible.

Instead, the ultimately workable environmental plan–the ultimate vision for preserving the flora, the fauna, and the ice caps–is to move people, and their pollution, off this earth.

Indeed, space travel is surely the ultimate plan for the survival of our species, too. Eventually, through runaway WMD, or runaway pollution, or a stray asteroid, or some Murphy-esque piece of bad luck, we will learn that our dominion over this planet is fleeting. That’s when we will discover the grim true meaning of Fermi’s Paradox.

In various ways, humankind has always anticipated apocalypse. And so from Noah’s Ark to “Silent Running” to “Wall*E,” we have envisioned ways for us and all other creatures, great and small, to survive. The space program, stutteringly nascent as it might be, can be seen as a slow-groping understanding that lifeboat-style compartmentalization, on earth and in the heavens, is the key to species survival. It’s a Darwinian fitness test that we ought not to flunk.

Barack Obama, who has blazed so many trails in his life, can blaze still more, including a track to space, over the far horizon of the future. In so doing, he would be keeping faith with a figure that he in many ways resembles, John F. Kennedy. It was the 35th President who declared that not only would America go to the moon, but that we would lead the world into space.

As JFK put it so ringingly back in 1962:

The vows of this Nation can only be fulfilled if we in this Nation are first, and, therefore, we intend to be first. In short, our leadership in science and in industry, our hopes for peace and security, our obligations to ourselves as well as others, all require us to make this effort, to solve these mysteries, to solve them for the good of all men, and to become the world’s leading space-faring nation.

Today the 44th President must spend a lot of money to restore our prosperity, but he must spend it wisely. He must also keep America secure against encroaching threats, even as he must improve the environment in the face of a burgeoning global economy.

Accomplishing all these tasks is possible, but not easy. Yes, of course he will need new ideas, but he will also need familiar and proven ideas. One of the best is fostering and deploying profound new technology in pursuit of expansion and exploration.

The stars, one might hope, are aligning for just such a rendezvous with destiny.

Here I would like to suggest readers a quotation from my book “Structure of the global catastrophe” (http://www.scribd.com/doc/7529531/-) there I discuss problems of preventing catastrophes.

Refuges and bunkers

Different sort of a refuge and bunkers can increase chances of survival of the mankind in case of global catastrophe, however the situation with them is not simple. Separate independent refuges can exist for decades, but the more they are independent and long-time, the more efforts are necessary for their preparation in advance. Refuges should provide ability for the mankind to the further self-reproduction. Hence, they should contain not only enough of capable to reproduction people, but also a stock of technologies which will allow to survive and breed in territory which is planned to render habitable after an exit from the refuge. The more this territory will be polluted, the higher level of technologies is required for a reliable survival.
Very big bunker will appear capable to continue in itself development of technologies and after catastrophe. However in this case it will be vulnerable to the same risks, as all terrestrial civilisation — there can be internal terrorists, AI, nanorobots, leaks etc. If the bunker is not capable to continue itself development of technologies it, more likely, is doomed to degradation.
Further, the bunker can be or «civilizational», that is keep the majority of cultural and technological achievements of the civilisation, or “specific”, that is keep only human life. For “long” bunkers (which are prepared for long-term stay) the problem of formation and education of children and risks of degradation will rise. The bunker can or live for the account of the resources which have been saved up before catastrophe, or be engaged in own manufacture. In last case it will be simply underground civilisation on the infected planet.
The more a bunker is constructed on modern technologies and independent cultural and technically, the higher ammount of people should live there (but in the future it will be not so: the bunker on the basis of advanced nanotechnology can be even at all deserted, — only with the frozen human embryos). To provide simple reproduction by means of training to the basic human trades, thousand people are required. These people should be selected and be in the bunker before final catastrophe, and, it is desirable, on a constant basis. However it is improbable, that thousand intellectually and physically excellent people would want to sit in the bunker “just in case”. In this case they can be in the bunker in two or three changes and receive for it a salary. (Now in Russia begins experiment «Mars 500» in which 6 humans will be in completely independent — on water, to meal, air — for 500 days. Possibly, it is the best result which we now have. In the early nineties in the USA there was also a project «Biosphera-2» in which people should live two years on full self-maintenance under a dome in desert. The project has ended with partial failure as oxygen level in system began to fall because of unforeseen reproduction of microorganisms and insects.) As additional risk for bunkers it is necessary to note fact of psychology of the small groups closed in one premise widely known on the Antarctic expeditions — namely, the increase of animosities fraught with destructive actions, reducing survival rate.
The bunker can be either unique, or one of many. In the first case it is vulnerable to different catastrophes, and in the second is possible struggle between different bunkers for the resources which have remained outside. Or is possible war continuation if catastrophe has resulted from war.
The bunker, most likely, will be either underground, or in the sea, or in space. But the space bunker too can be underground of asteroids or the Moon. For the space bunker it will be more difficult to use the rests of resources on the Earth. The bunker can be completely isolated, or to allow “excursion” in the external hostile environment.
As model of the sea bunker can serve the nuclear submarine possessing high reserve, autonomy, manoeuvrability and stability to negative influences. Besides, it can easily be cooled at ocean (the problem of cooling of the underground closed bunkers is not simple), to extract from it water, oxygen and even food. Besides, already there are ready boats and technical decisions. The boat is capable to sustain shock and radiating influence. However the resource of independent swimming of modern submarines makes at the best 1 year, and in them there is no place for storage of stocks.
Modern space station ISS could support independently life of several humans within approximately year though there are problems of independent landing and adaptation. Not clearly, whether the certain dangerous agent, capable to get into all cracks on the Earth could dissipate for so short term.
There is a difference between gaso — and bio — refuges which can be on a surface, but are divided into many sections for maintenance of a mode of quarantine, and refuges which are intended as a shelter from in the slightest degree intelligent opponent (including other people who did not manage to get a place in a refuge). In case of biodanger island with rigid quarantine can be a refuge if illness is not transferred by air.
A bunker can possess different vulnerabilities. For example, in case of biological threat, is enough insignificant penetration to destroy it. Only hi-tech bunker can be the completely independent. Energy and oxygen are necessary to the bunker. The system on a nuclear reactor can give energy, but modern machines hardly can possess durability more than 30–50 years. The bunker cannot be universal — it should assume protection against the certain kinds of threats known in advance — radiating, biological etc.
The more reinforced is a bunker, the smaller number of bunkers can prepare mankind in advance, and it will be more difficult to hide such bunker. If after a certain catastrophe there was a limited number of the bunkers which site is known, the secondary nuclear war can terminate mankind through countable number of strikes in known places.
The larger is the bunker, the less amount of such bunkers is possible to construct. However any bunker is vulnerable to accidental destruction or contamination. Therefore the limited number of bunkers with certain probability of contamination unequivocally defines the maximum survival time of mankind. If bunkers are connected among themselves by trade and other material distribution, contamination between them is more probable. If bunkers are not connected, they will degrade faster. The more powerfully and more expensively is the bunker, the more difficult is to create it imperceptibly for the probable opponent and so it easeir becomes the goal for an attack. The more cheaply the bunker, the less it is durable.
Casual shelters — the people who have escaped in the underground, mines, submarines — are possible. They will suffer from absence of the central power and struggle for resources. The people, in case of exhaustion of resources in one bunker, can undertake the armed attempts to break in other next bunker. Also the people who have escaped casually (or under the threat of the comong catastrophe), can attack those who was locked in the bunker.
Bunkers will suffer from necessity of an exchange of heat, energy, water and air with an external world. The more independent is the bunker, the less time it can exist in full isolation. Bunkers being in the Earth will deeply suffer from an overheating. Any nuclear reactors and other complex machines will demand external cooling. Cooling by external water will unmask them, and it is impossible to have energy sources lost-free in the form of heat, while on depth of earth there are always high temperatures. Temperature growth, in process of deepening in the Earth, limits depth of possible bunkers. (The geothermal gradient on the average makes 30 degrees C/kilometers. It means, that bunkers on depth more than 1 kilometre are impossible — or demand huge cooling installations on a surface, as gold mines in the republic of South Africa. There can be deeper bunkers in ices of Antarctica.)
The more durable, more universal and more effective, should be a bunker, the earlier it is necessary to start to build it. But in this case it is difficult to foresee the future risks. For example, in 1930th years in Russia was constructed many anti-gase bombproof shelters which have appeared useless and vulnerable to bombardments by heavy demolition bombs.
Efficiency of the bunker which can create the civilisation, corresponds to a technological level of development of this civilisation. But it means that it possesses and corresponding means of destruction. So, especially powerful bunker is necessary. The more independently and more absolutely is the bunker (for example, equipped with AI, nanorobots and biotechnologies), the easier it can do without, eventually, people, having given rise to purely computer civilisation.
People from different bunkers will compete for that who first leaves on a surface and who, accordingly, will own it — therefore will develop the temptation for them to go out to still infected sites of the Earth.
There are possible automatic robotic bunkers: in them the frozen human embryos are stored in a certain artificial uterus and through hundreds or thousand years start to be grown up. (Technology of cryonics of embryos already exists, and works on an artificial uterus are forbidden for bioethics reasons, but basically such device is possible.) With embryos it is possible to send such installations in travel to other planets. However, if such bunkers are possible, the Earth hardly remains empty — most likely it will be populated with robots. Besides, if the human cub who has been brought up by wolves, considers itself as a wolf as whom human who has been brought up by robots will consider itself?
So, the idea about a survival in bunkers contains many reefs which reduce its utility and probability of success. It is necessary to build long-term bunkers for many years, but they can become outdated for this time as the situation will change and it is not known to what to prepare. Probably, that there is a number of powerful bunkers which have been constructed in days of cold war. A limit of modern technical possibilities the bunker of an order of a 30-year-old autonomy, however it would take long time for building — decade, and it will demand billions dollars of investments.
Independently there are information bunkers, which are intended to inform to the possible escaped descendants about our knowledge, technologies and achievements. For example, in Norway, on Spitsbergen have been created a stock of samples of seeds and grain with these purposes (Doomsday Vault). Variants with preservation of a genetic variety of people by means of the frozen sperm are possible. Digital carriers steady against long storage, for example, compact discs on which the text which can be read through a magnifier is etched are discussed and implemented by Long Now Foundation. This knowledge can be crucial for not repeating our errors.

This is cross-posted from my blog. This milestone by SpaceX is directly relevant to programs by Lifeboat such as the AsteroidShield and SpaceHabitat, and possibly also (eventually) to Space-Based Solar Power.

SpaceX Falcon 1 Rocket Launch photo

Stars My Destination
After the third try, Elon Musk, the founder of SpaceX, co-founder of Paypal, chairman of SolarCity and chairman of Tesla Motors (beat that resumé!) was interviewed by WIRED about the difficulties of making his space rockets reach orbit:

Wired.com: How do you maintain your optimism?

Musk: Do I sound optimistic?

Wired.com: Yeah, you always do.

Musk: Optimism, pessimism, fuck that; we’re going to make it happen. As God is my bloody witness, I’m hell-bent on making it work.

Falcon 1: The First Privately Developed Rocket to Orbit the Earth
Well kids, perseverance pays off. On the 4th try, the 70-foot Falcon 1 rocket reached orbit wit a 364-pound dummy payload: “The data shows we achieved a super precise orbit insertion — middle of the bullseye — and then went on to coast and restart the second stage, which was icing on the cake.” Check out the video of the highlights of the launch.

“This really means a lot,” Musk told a crowd of whooping employees. “There’s only a handful of countries on Earth that have done this. It’s usually a country thing, not a company thing. We did it.”

Musk pledged to continue getting rockets into orbit, saying the company has resolved design issues that plagued previous attempts.

Last month, SpaceX lost three government satellites and human ashes including the remains of astronaut Gordon Cooper and “Star Trek” actor James Doohan after its third rocket was lost en route to space. The company blamed a timing error for the failure that caused the rocket’s first stage to bump into the second stage after separation.

SpaceX’s maiden launch in 2006 failed because of a fuel line leak. Last year, another rocket reached about 180 miles above Earth, but its second stage prematurely shut off.

The Falcon 1, at $7.9 million each, is what you could call the budget model. In fact, $7.9 million is basically pocket changed compared to what government agencies like NASA are used to paying to contractors like Lockheed Martin & co.

SpaceX is also working on the Falcon 9 (12,500 kg to low Earth orbit, and over 4,640 kg to geosynchronous transfer orbit) and Falcon 9 Heavy (28,000 kg to low Earth orbit, and over 12,000 kg to geosynchronous transfer orbit) to help NASA reach the International Space Station, among other things. These should cost between $36.75 million and $104 million each depending on the model and mission, and the first launch is scheduled for the first quarter of 2009.

Continue reading “SpaceX Falcon 1 Rocket Reaches Orbit on 4th Try” | >

Cross posted from Nextbigfuture

Click for larger image

I had previously looked at making two large concrete or nanomaterial monolithic or geodesic domes over cities which could protect a city from nuclear bombs.

Now Alexander Bolonkin has come up with a cheaper, technological easy and more practical approach with thin film inflatable domes. It not only would provide protection form nuclear devices it could be used to place high communication devices, windmill power and a lot of other money generating uses. The film mass covered of 1 km**2 of ground area is M1 = 2×10**6 mc = 600 tons/km**2 and film cost is $60,000/km**2.
The area of big city diameter 20 km is 314 km**2. Area of semi-spherical dome is 628 km2. The cost of Dome cover is 62.8 millions $US. We can take less the overpressure (p = 0.001atm) and decrease the cover cost in 5 – 7 times. The total cost of installation is about 30–90 million $US. Not only is it only about $153 million to protect a city it is cheaper than a geosynchronous satellite for high speed communications. Alexander Bolonkin’s website

The author suggests a cheap closed AB-Dome which protects the densely populated cities from nuclear, chemical, biological weapon (bombs) delivered by warheads, strategic missiles, rockets, and various incarnations of aviation technology. The offered AB-Dome is also very useful in peacetime because it shields a city from exterior weather and creates a fine climate within the ABDome. The hemispherical AB-Dome is the inflatable, thin transparent film, located at altitude up to as much as 15 km, which converts the city into a closed-loop system. The film may be armored the stones which destroy the rockets and nuclear warhead. AB-Dome protects the city in case the World nuclear war and total poisoning the Earth’s atmosphere by radioactive fallout (gases and dust). Construction of the AB-Dome is easy; the enclosure’s film is spread upon the ground, the air pump is turned on, and the cover rises to its planned altitude and supported by a small air overpressure. The offered method is cheaper by thousand times than protection of city by current antirocket systems. The AB-Dome may be also used (height up to 15 and more kilometers) for TV, communication, telescope, long distance location, tourism, high placed windmills (energy), illumination and entertainments. The author developed theory of AB-Dome, made estimation, computation and computed a typical project.

His idea is a thin dome covering a city with that is a very transparent film 2 (Fig.1). The film has thickness 0.05 – 0.3 mm. One is located at high altitude (5 — 20 km). The film is supported at this altitude by a small additional air pressure produced by ground ventilators. That is connected to Earth’s ground by managed cables 3. The film may have a controlled transparency option. The system can have the second lower film 6 with controlled reflectivity, a further option.

The offered protection defends in the following way. The smallest space warhead has a
minimum cross-section area 1 m2 and a huge speed 3 – 5 km/s. The warhead gets a blow and overload from film (mass about 0.5 kg). This overload is 500 – 1500g and destroys the warhead (see computation below). Warhead also gets an overpowering blow from 2 −5 (every mass is 0.5 — 1 kg) of the strong stones. Relative (about warhead) kinetic energy of every stone is about 8 millions of Joules! (It is in 2–3 more than energy of 1 kg explosive!). The film destroys the high speed warhead (aircraft, bomber, wing missile) especially if the film will be armored by stone.

Our dome cover (film) has 2 layers: top transparant layer 2, located at a maximum altitude (up 5 −20 km), and lower transparant layer 4 having control reflectivity, located at altitude of 1–3 km (option). Upper transparant cover has thickness about 0.05 – 0.3 mm and supports the protection strong stones (rebbles) 8. The stones have a mass 0.2 – 1 kg and locate the step about 0.5 m.

If we want to control temperature in city, the top film must have some layers: transparant dielectric layer, conducting layer (about 1 — 3 microns), liquid crystal layer (about 10 — 100 microns), conducting layer (for example, SnO2), and transparant dielectric layer. Common thickness is 0.05 — 0.5 mm. Control voltage is 5 — 10 V. This film may be produced by industry relatively cheaply.

If some level of light control is needed materials can be incorporated to control transparency. Also, some transparent solar cells can be used to gather wide area solar power.


As you see the 10 kt bomb exploded at altitude 10 km decreases the air blast effect about in 1000
times and thermal radiation effect without the second cover film in 500 times, with the second reflected film about 5000 times. The hydrogen 100kt bomb exploded at altitude 10 km decreases the air blast effect about in 10 times and thermal radiation effect without the second cover film in 20 times, with the second reflected film about 200 times. Only power 1000kt thermonuclear (hydrogen) bomb can damage city. But this damage will be in 10 times less from air blast and in 10 times less from thermal radiation. If the film located at altitude 15 km, the
damage will be in 85 times less from the air blast and in 65 times less from the thermal radiation.
For protection from super thermonuclear (hydrogen) bomb we need in higher dome altitudes (20−30 km and more). We can cover by AB-Dome the important large region and full country.

Because the Dome is light weight it could be to stay in place even with very large holes. Multiple shells of domes could still be made for more protection.

Better climate inside a dome can make for more productive farming.

AB-Dome is cheaper in hundreds times then current anti-rocket systems.
2. AB-Dome does not need in high technology and can build by poor country.
3. It is easy for building.
4. Dome is used in peacetime; it creates the fine climate (weather) into Dome.
5. AB-Dome protects from nuclear, chemical, biological weapon.
6. Dome produces the autonomous existence of the city population after total World nuclear war
and total confinement (infection) all planet and its atmosphere.
7. Dome may be used for high region TV, for communication, for long distance locator, for
astronomy (telescope).
8. Dome may be used for high altitude tourism.
9. Dome may be used for the high altitude windmills (getting of cheap renewable wind energy).
10. Dome may be used for a night illumination and entertainment

Cross posted from Next big future by Brian Wang, Lifeboat foundation director of Research

I am presenting disruption events for humans and also for biospheres and planets and where I can correlating them with historical frequency and scale.

There has been previous work on categorizing and classifying extinction events. There is Bostroms paper and there is also the work by Jamais Cascio and Michael Anissimov on classification and identifying risks (presented below).

A recent article discusses the inevtiable “end of societies” (it refers to civilizations but it seems to be referring more to things like the end of the roman empire, which still ends up later with Italy, Austria Hungary etc… emerging)

The theories around complexity seem me that to be that core developments along connected S curves of technology and societal processes cap out (around key areas of energy, transportation, governing efficiency, agriculture, production) and then a society falls back (soft or hard dark age, reconstitutes and starts back up again).

Here is a wider range of disruption. Which can also be correlated to frequency that they have occurred historically.

High growth drop to Low growth (short business cycles, every few years)
Recession (soft or deep) Every five to fifteen years.
Depressions (50−100 years, can be more frequent)

List of recessions for the USA (includes depressions)

Differences recession/depression

Good rule of thumb for determining the difference between a recession and a depression is to look at the changes in GNP. A depression is any economic downturn where real GDP declines by more than 10 percent. A recession is an economic downturn that is less severe. By this yardstick, the last depression in the United States was from May 1937 to June 1938, where real GDP declined by 18.2 percent. Great Depression of the 1930s can be seen as two separate events: an incredibly severe depression lasting from August 1929 to March 1933 where real GDP declined by almost 33 percent, a period of recovery, then another less severe depression of 1937–38. (Depressions every 50–100 years. Were more frequent in the past).

Dark age (period of societal collapse, soft/light or regular)
I would say the difference between a long recession and a dark age has to do with breakdown of societal order and some level of population decline / dieback, loss of knowledge/education breakdown. (Once per thousand years.)

I would say that a soft dark age is also something like what China had from the 1400’s to 1970.
Basically a series of really bad societal choices. Maybe something between depressions and dark age or something that does not categorize as neatly but an underperformance by twenty times versus competing groups. Perhaps there should be some kind of societal disorder, levels and categories of major society wide screw ups — historic level mistakes. The Chinese experience I think was triggered by the renunciation of the ocean going fleet, outside ideas and tech, and a lot of other follow on screw ups.

Plagues played a part in weakening the Roman and Han empires.

Societal collapse talk which includes Toynbee analysis.

Toynbee argues that the breakdown of civilizations is not caused by loss of control over the environment, over the human environment, or attacks from outside. Rather, it comes from the deterioration of the “Creative Minority,” which eventually ceases to be creative and degenerates into merely a “Dominant Minority” (who forces the majority to obey without meriting obedience). He argues that creative minorities deteriorate due to a worship of their “former self,” by which they become prideful, and fail to adequately address the next challenge they face.

My take is that the Enlightenment would strengthened with a larger creative majority, where everyone has a stake and capability to creatively advance society. I have an article about who the elite are now.

Many now argue about how dark the dark ages were not as completely bad as commonly believed.
The dark ages is also called the Middle Ages

Population during the middle ages

Between dark age/social collapse and extinction. There are levels of decimation/devastation. (use orders of magnitude 90+%, 99%, 99.9%, 99.99%)

Level 1 decimation = 90% population loss
Level 2 decimation = 99% population loss
Level 3 decimation = 99.9% population loss

Level 9 population loss (would pretty much be extinction for current human civilization). Only 6–7 people left or less which would not be a viable population.

Can be regional or global, some number of species (for decimation)

Categorizations of Extinctions, end of world categories

Can be regional or global, some number of species (for extinctions)

== The Mass extinction events have occurred in the past (to other species. For each species there can only be one extinction event). Dinosaurs, and many others.

Unfortunately Michael’s accelerating future blog is having some issues so here is a cached link.

Michael was identifying manmade risks
The Easier-to-Explain Existential Risks (remember an existential risk
is something that can set humanity way back, not necessarily killing
everyone):

1. neoviruses
2. neobacteria
3. cybernetic biota
4. Drexlerian nanoweapons

The hardest to explain is probably #4. My proposal here is that, if
someone has never heard of the concept of existential risk, it’s
easier to focus on these first four before even daring to mention the
latter ones. But here they are anyway:

5. runaway self-replicating machines (“grey goo” not recommended
because this is too narrow of a term)
6. destructive takeoff initiated by intelligence-amplified human
7. destructive takeoff initiated by mind upload
8. destructive takeoff initiated by artificial intelligence

Another classification scheme: the eschatological taxonomy by Jamais
Cascio on Open the Future. His classification scheme has seven
categories, one with two sub-categories. These are:

0:Regional Catastrophe (examples: moderate-case global warming,
minor asteroid impact, local thermonuclear war)
1: Human Die-Back (examples: extreme-case global warming,
moderate asteroid impact, global thermonuclear war)
2: Civilization Extinction (examples: worst-case global warming,
significant asteroid impact, early-era molecular nanotech warfare)
3a: Human Extinction-Engineered (examples: targeted nano-plague,
engineered sterility absent radical life extension)
3b: Human Extinction-Natural (examples: major asteroid impact,
methane clathrates melt)
4: Biosphere Extinction (examples: massive asteroid impact,
“iceball Earth” reemergence, late-era molecular nanotech warfare)
5: Planetary Extinction (examples: dwarf-planet-scale asteroid
impact, nearby gamma-ray burst)
X: Planetary Elimination (example: post-Singularity beings
disassemble planet to make computronium)

A couple of interesting posts about historical threats to civilization and life by Howard Bloom.

Natural climate shifts and from space (not asteroids but interstellar gases).

Humans are not the most successful life, bacteria is the most successful. Bacteria has survived for 3.85 billion years. Humans for 100,000 years. All other kinds of life lasted no more than 160 million years. [Other species have only managed to hang in there for anywhere from 1.6 million years to 160 million. We humans are one of the shortest-lived natural experiments around. We’ve been here in one form or another for a paltry two and a half million years.] If your numbers are not big enough and you are not diverse enough then something in nature eventually wipes you out.

Following the bacteria survival model could mean using transhumanism as a survival strategy. Creating more diversity to allow for better survival. Humans adapted to living under the sea, deep in the earth, in various niches in space, more radiation resistance,non-biological forms etc… It would also mean spreading into space (panspermia). Individually using technology we could become very successful at life extension, but it will take more than that for a good plan for human (civilization, society, species) long term survival planning.

Other periodic challenges:
142 mass extinctions, 80 glaciations in the last two million years, a planet that may have once been a frozen iceball, and a klatch of global warmings in which the temperature has soared by 18 degrees in ten years or less.

In the last 120,000 years there were 20 interludes in which the temperature of the planet shot up 10 to 18 degrees within a decade. Until just 10,000 years ago, the Gulf Stream shifted its route every 1,500 years or so. This would melt mega-islands of ice, put out our coastal cities beneath the surface of the sea, and strip our farmlands of the conditions they need to produce the food that feeds us.

The solar system has a 240-million-year-long-orbit around the center of our galaxy, an orbit that takes us through interstellar gas clusters called local fluff, interstellar clusters that strip our planet of its protective heliosphere, interstellar clusters that bombard the earth with cosmic radiation and interstellar clusters that trigger giant climate change.


The BBC reports that Sir Edmund Hillary, the New Zealand native who, along with Sherpa Tenzing Norgay of Nepal was the first man to successfully summit Mount Everest, had died at 88 years of age. Hillary was apparently injured this past April when he fell while visiting Nepal and the reports state that this injury contributed to a decline in his health that ultimately culminated in his passing.

While his fame was first and foremost as a result of his triumphant effort on Everest in 1953, he was revered in Nepal for his efforts to help the Nepalese Sherpas improve their access to medicine, education and other modern conveniences and his legacy will continue in the form of those edifices in Nepal that exist as a result of his work.

Sir Ed, as he preferred to be called, was also something of an environmentalist. Upon a recent visit to the base of Everest he was so dismayed by the condition of the mountain (as a result of the decades of equipment including things such as spent oxygen bottles and massive amounts of inorganic and thus non-biodegradable gear) that he called for a fifty year moratorium on permits being issued to attempt ascents on the peak. He called upon the climbing community to make an effort to repair the damage to the fabled crag by packing out the detritus that was scarring his beloved mountain.

While the passing of this great man has relatively little to do with the mission of the Lifeboat Foundation, it seemed appropriate to report on his passing simply because he demonstrated that with sufficient will even things that are seemingly impossible are well within the grasp of those for whom failure is not an option.

At the Lifeboat Foundation we recognize this fact. We cannot and will not fail in our efforts to identify and defend against any and all threats to humanity. While it may sadden us to learn of the passing of a great adventurer like Sir Edmund Hillary, his accomplishments should serve as a source of motivation for each of us as we pursue our own personal Everests.

Following is a link to a wonderful video of the successful effort to summit the world’s highest peak. Consider for a moment how primitive this equipment is compared with what is used today. It is a great reminder of just how far we’ve come in a little over half a century and should prove to be a source of inspiration to us all. Video Link


Supplying a substantial percentage of America’s future electrical power supply from space using SBSP (space-based solar power) systems can only be expressed as a giant leap forward in space operations. Each of the hundreds of solar power satellites needed would require 10,000–20,000 tons of components transported to orbit, assembled in orbit, and then moved to geostationary orbit for operations. The scale of logistics operations required is substantially greater than what we have previously undertaken. Periodically, industrial operations experience revolutions in technology and operations. Deep sea oil exploration is an example. Within a couple decades, entirely new industrial operations can start and grow to significant levels of production. The same will happen with space industrialization when—not if—the right product or service is undertaken. SBSP may be the breakthrough product for leading the industrialization of space. This was our assumption in conducting the study. As the cost of oil approaches $100 a barrel, combined with the possibility of the world reaching peak oil production in the near future, this may turn out to be a valid assumption.

Source: The Space Review

From Physorg.com:

Humanity has long since established a foothold in the Artic and Antarctic, but extensive colonization of these regions may soon become economically viable. If we can learn to build self-sufficient habitats in these extreme environments, similar technology could be used to live on the Moon or Mars.

The average temperature of the Antarctic coast in winter is about −20 °C. As if this weren’t enough, the region suffers from heavy snowfall, strong winds, and six-month nights. How can humanity possibly survive in such a hostile environment?

So far we seem to have managed well; Antarctica has almost forty permanently staffed research stations (with several more scheduled to open by 2008). These installations are far from self-sufficient, however; the USA alone spent 125 million dollars in 1995 on maintenance and operations.[1] All vital resources must be imported—construction materials, food, and especially fuel for generating electricity and heat.

Modern technology and construction techniques may soon permit the long-term, self-sufficient colonization of such extreme environments.

Why would anyone want to live there? Exceptional scientific research aside, the Arctic is though to be rich in mineral resources (oil in particular). The Antarctic is covered by an ice sheet over a mile thick, making any mineral resources it may have difficult to access. Its biological resources, however, have great potential. Many organisms adapted to extreme cold have evolved unusual biochemical processes, which can be leveraged into valuable industrial or medical techniques.[2] Alexander Bolonkin and Richard Cathcart are firm believers in the value of this chilling territory. “Many people worldwide, especially in the Temperate Zones, muse on the possibility of humans someday inhabiting orbiting Space Settlements and Moon Bases, or a terraformed Mars” Bolonkin points out, “but few seem to contemplate an increased use of ~25% of Earth’s surface—the Polar Regions.”

Indeed, the question of space exploration is intriguing. We would all like to know whether there is life on Mars, but robot probes can only perform the experiments they take along with them. Only humans are flexible enough to explore a new territory in detail and determine whether there are enough resources to sustain a long-term presence. Does modern technology really permit the design of lightweight, energy-efficient habitats suitable for other worlds?

That would be cool if it did! Although a few domed cities in the polar regions couldn’t hurt mankind’s overall survivability, space — and developing effective countermeasures — have a lot more security to offer.