Toggle light / dark theme

In July, particle physicists in the US completed the Snowmass process—a decadal community planning exercise that forges a vision of scientific priorities and future facilities. Organized by the Division of Particles and Fields of the American Physical Society, this year’s Snowmass meetings considered a range of plans including neutrino experiments and muon colliders. One new idea that generated buzz was the Cool Copper Collider (or C3 for short). This proposal calls for accelerating particles with conventional, or “normal-conducting,” radio frequency (RF) cavities—as opposed to the superconducting RF cavities used in modern colliders. This “retro” design could potentially achieve 500 GeV collision energies with an 8-km-long linear collider, making it significantly smaller and presumably less expensive than a comparable superconducting design.

The goal of the C3 project would be to operate as a Higgs factory, which—in particle-physics parlance—is a collider that smashes together electrons and their antimatter partners, called positrons, at energies above 250 GeV. Such a facility would make loads of Higgs bosons with less of the mess that comes from smashing protons and antiprotons together—as is done at the Large Hadron Collider (LHC) in Switzerland. A Higgs factory would give more precise measurements than the LHC of the couplings between Higgs bosons and other particles, potentially uncovering small discrepancies that could lead to new theories of particle physics. “I think the Higgs is the most interesting particle that’s out there,” says Emilio Nanni from the SLAC National Accelerator Laboratory in California. “And we should absolutely build a machine that’s dedicated to studying it with as much precision as possible.”

But an outsider might wonder why another Higgs-factory proposal is being added to the particle-physics menu. A similar factory design—the International Linear Collider (ILC)—has been in the works for years, but that project is presently stalled, as the Japanese government has not yet confirmed its support for building the facility in Japan. Waiting in the wings are several other large particle-physics proposals, including CERN’s Future Circular Collider and China’s Circular Electron Positron Collider.

Once the first artificial super intelligence is created it will help us recursively improve ourselves and then the post human millennium will begin.


Thinking this will prevent war, the US government gives an impenetrable supercomputer total control over launching nuclear missiles. But what the computer does with the power is unimaginable to its creators.

http://www.imdb.com/title/tt0064177/combined

Finding definitive evidence for past primitive life in ancient Mars rock and soil samples may be well-nigh impossible, renowned geologist and astrobiologist Frances Westall told me at the recent Europlanet Science Congress (EPSC) in Granada, Spain. And she should know. Westall is someone who still claims the discovery of Earth’s oldest-known microfossils, dating back some 3.45-billion-years ago.

But it’s hard enough to identify primitive microfossils in Earth’s oldest rocks, much less from robotic samples taken on Mars. Thus, if we have a hard time identifying past life on Earth, what hope do we have of doing it with Mars samples?

“I think it’s going to be really difficult,” said Westall, a researcher at France’s Center for Molecular Biophysics in Orleans. “I can tell you, there’s going to be a lot of arguments about it.”

According to a revealing private intelligence report published by Strider Technologies, at least 154 Chinese scientists who worked on U.S. government-sponsored research at the country’s top national security laboratory have been recruited to perform scientific work in China. They are working on the design and manufacture of nuclear weapons, which is considered a high national security risk.

————————–
#ChinaRevealed #ChinaNews

It is scheduled to be completed by 2050.

Tokyo’s Metropolitan Government plans to build a high-tech, sustainable city on reclaimed land in its bay area — Tokyo Bay eSG. Announced in April 2021, the Tokyo Metropolitan Government is clearing the decks for action to make the city carbon-neutral and better able to withstand future climate and health crises.

As its name implies, Tokyo eSG will be designed on the fundamentals of social and environmental governance and combine cutting-edge green technologies.


The gurus of the psychedelic era of American pop culture extolled the experience of the “acid trip.” But the U.S. government and much of the public remained leery of LSD, with President Nixon declaring it and assorted other drugs “public enemy No. 1.” Now, half a century after Nixon launched the War on Drugs, a Miami-area private research clinic has kicked off a federally approved clinical trial to test LSD as a possible treatment for generalized anxiety disorder.

China Launches World’s Fastest Quantum Computers | China’s Advancement In Quantum Computers #technology.

“Techno Jungles”

In 2019, Google announced that its 53-qubit Sycamore processor had finished a task in 3.3 minutes that would have taken a conventional supercomputer at least 2.5 days to accomplish. According to reports, China’s 66-Qubit Zuchongzhi 2 Quantum Processor was able to complete the same task 1 million times faster in October of last year. Together with the Shanghai Institute of Technical Physics and the Shanghai Institute of Microsystem and Information Technology, a group of researchers from the Chinese Academy of Sciences Center for Excellence in Quantum Information and Quantum Physics were responsible for the development of that processor.

According to NDTV, the Chinese government under Xi Jinping has spent $10 billion on the country’s National Laboratory for Quantum Information Sciences. This demonstrates China’s significant commitment to the field of quantum computing. According to Live Science, the nation is also a world leader in the field of quantum networking, which involves the transmission of data that has been encoded through the use of quantum mechanics over great distances.

Webb can image the entire planet at once in high resolution at a short exposure time, allowing for the study of dust storms, weather patterns and seasonal changes.

The James Webb Space Telescope has captured its first images and spectra of Mars, revealing atmospheric data that previous instruments couldn’t detect.

Captured with its Near InfraRed Camera, or NIRCam instrument from JWST’s position around a million miles (1.6 million kilometers) from Mars, on September 5, along with data from its Near InfraRed Spectrometer (NIRSpec), the images were released on Monday, September 19, at the Europlanet Science Congress 2022.