Menu

Blog

Archive for the ‘genetics’ category: Page 77

Nov 14, 2023

Studies identify novel underpinnings of genetic ALS

Posted by in categories: biotech/medical, genetics, neuroscience

A pair of studies from the laboratory of Evangelos Kiskinis, Ph.D., associate professor in the Ken and Ruth Davee Department of Neurology’s Division of Neuromuscular Disease and of Neuroscience, have uncovered novel cellular mechanisms that are involved in two types of genetic amyotrophic lateral sclerosis, or ALS.

The findings, published in Science Advances and Cell Reports, improve the understanding of ALS, a progressive neurodegenerative disease that attacks in the brain and , and provides support for the future development of targeted therapies.

An estimated 32,000 individuals are currently living with ALS in the U.S., according to the Les Turner ALS Foundation. There are two types of ALS: sporadic (non-genetic), which makes up more than 90% of all ALS cases, and familial (genetic).

Nov 13, 2023

Conquer Aging or Die Trying Podcast, Episode #1: Crissman Loomis (@Unaging.com)

Posted by in categories: biotech/medical, genetics, life extension

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

Continue reading “Conquer Aging or Die Trying Podcast, Episode #1: Crissman Loomis (@Unaging.com)” »

Nov 13, 2023

Advancing CAR-T Therapy Through Immunophenotyping

Posted by in categories: bioengineering, biotech/medical, genetics

Adoptive cell therapy has emerged as a promising alternative treatment for hematological and solid cancers, with CAR-T therapy standing out as a prominent avenue. In this approach, T cells are genetically engineered with chimeric antigen receptors (CARs) to enhance their targeting capabilities1–2. The outcome of CAR-T cell therapy hinges on a complex interplay of phenotype, activation, and functional profiling of these engineered cells. Immunophenotypic characterization of CAR-T cells assumes a pivotal role in ensuring treatment quality and facilitating continuous monitoring of treatment response1. In the process of immunophenotyping, engineered T cells are separated based on their markers to characterize the composition of the cell population within the sample. The strategic identification and isolation of specific CAR-T cell subsets is essential in augmenting therapy responses2.

Deciphering Cellular Composition, Defining CAR-T Therapy Efficacy

Immunophenotyping is a pivotal technique that combines specific antibodies with fluorescent compounds to reveal specific protein expression in cell populations to identify categorize the tagged cells. Immunophenotyping leverages the differences in surface markers among T cells, reflecting their differentiation, activation, and memory status2. These markers provide insights into immune cell development, function, proliferation potential, and long-term viability. The distinct surface marker profiles closely correlate with the efficacy of CAR-T cell therapy3. Essential markers for immunophenotypic analysis, including CD3, CD4, CD8, CD45RA, CD34R0, CCR7, CD27, and CD95, are presented in Table 1.

Nov 12, 2023

New Gene Editing Treatment Cuts Dangerous Cholesterol in Small Study

Posted by in categories: bioengineering, biotech/medical, genetics

So they volunteered for an experimental cholesterol-lowering treatment using gene editing that was unlike anything tried in patients before.

The result, reported Sunday by the company Verve Therapeutics of Boston at a meeting of the American Heart Association, showed that the treatment appeared to reduce cholesterol levels markedly in patients and that it appeared to be safe.

The trial involved only 10 patients, with an average age of 54. Each had a genetic abnormality, familial hypercholesterolemia, that affects around one million people in the United States. But the findings could also point the way for millions of other patients around the world who are contending with heart disease, which remains a leading cause of death. In the United States alone, more than 800,000 people have heart attacks each year.

Nov 11, 2023

Revolutionizing CRISPR: Quantum Biology and AI Merge to Enhance Genome Editing

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics, quantum physics, robotics/AI

Oak Ridge National Laboratory’s research in quantum biology and AI has significantly improved the efficiency of CRISPR Cas9 genome editing in microbes, aiding in renewable energy development.

Scientists at Oak Ridge National Laboratory (ORNL) used their expertise in quantum biology, artificial intelligence, and bioengineering to improve how CRISPR Cas9 genome editing tools work on organisms like microbes that can be modified to produce renewable fuels and chemicals.

CRISPR is a powerful tool for bioengineering, used to modify genetic code to improve an organism’s performance or to correct mutations. The CRISPR Cas9 tool relies on a single, unique guide RNA.

Nov 11, 2023

Scientists genetically engineer yeast to make safer schizophrenia drugs

Posted by in categories: biotech/medical, genetics, neuroscience

Treating mental disorders with fewer side effects

Now, researchers have managed to genetically modify yeast cells to produce drugs for mental disorders such as schizophrenia with fewer side effects.

“Development of medicines from natural plant substances is widely used. However, since plants do not produce these substances to fight human diseases, there is often a need to modify them to make them more effective and safe,” said Michael Krogh Jensen, a senior researcher at DTU Biosustain and co-founder of the biotech company Biomia.

Nov 11, 2023

5 ways to build an Alzheimer’s-resistant brain | Lisa Genova

Posted by in categories: biotech/medical, cybercrime/malcode, food, genetics, neuroscience

Only 2% of Alzheimer’s is 100% genetic. The rest is up to your daily habits.

Up Next ► 4 ways to hack your memory https://youtu.be/SCsztDMGP7o.

Continue reading “5 ways to build an Alzheimer’s-resistant brain | Lisa Genova” »

Nov 11, 2023

What If We Became A Type I Civilization? 15 Predictions

Posted by in categories: augmented reality, bioengineering, biological, genetics, Ray Kurzweil, robotics/AI, singularity, transhumanism

This video explores what life would be like if we became a Type I Civilization. Watch this next video about the Technological Singularity: https://youtu.be/yHEnKwSUzAE.
🎁 5 Free ChatGPT Prompts To Become a Superhuman: https://bit.ly/3Oka9FM
🤖 AI for Business Leaders (Udacity Program): https://bit.ly/3Qjxkmu.
☕ My Patreon: https://www.patreon.com/futurebusinesstech.
➡️ Official Discord Server: https://discord.gg/R8cYEWpCzK

SOURCES:
https://www.futuretimeline.net.
• The Singularity Is Near: When Humans Transcend Biology (Ray Kurzweil): https://amzn.to/3ftOhXI
• The Future of Humanity (Michio Kaku): https://amzn.to/3Gz8ffA

Continue reading “What If We Became A Type I Civilization? 15 Predictions” »

Nov 10, 2023

Scientists Create Gene-Hacked Monkey That Glowed Green

Posted by in category: genetics

The lab-born primate, developed by Chinese scientists, made history as the world’s first live-born “chimeric” monkey. And: he glowed! Green!

Nov 10, 2023

In vivo ephaptic coupling allows memory network formation

Posted by in categories: genetics, mathematics, neuroscience

It is increasingly clear that memories are distributed across multiple brain areas. Such “engram complexes” are important features of memory formation and consolidation. Here, we test the hypothesis that engram complexes are formed in part by bioelectric fields that sculpt and guide the neural activity and tie together the areas that participate in engram complexes. Like the conductor of an orchestra, the fields influence each musician or neuron and orchestrate the output, the symphony. Our results use the theory of synergetics, machine learning, and data from a spatial delayed saccade task and provide evidence for in vivo ephaptic coupling in memory representations.

Page 77 of 509First7475767778798081Last