Toggle light / dark theme

Microsoft Testing DNA’s Data Storage Ability With Record-Breaking Results

Biocomputing/ living circuit computing/ gene circuitry are the longer term future beyond Quantum. Here is another one of the many building blocks.


The tiny molecule responsible for transmitting the genetic data for every living thing on earth could be the answer to the IT industry’s quest for a more compact storage medium. In fact, researchers from Microsoft and the University of Washington recently succeeded in storing 200 MB of data on a few strands of DNA, occupying a small dot on a test tube many times smaller than the tip of a pencil.

The Internet in a Shoebox.

Despite the small space occupied by the DNA strands, the researchers were nonetheless able to successfully store and retrieve high-definition digital video, the top 100 books from Project Guttenberg, and copies of the Universal Declaration of Human Rights in more than 100 languages.

Engineers Design Programmable RNA Vaccines That Protext Against Ebola and H1N1 Influenza

A newly published study details how engineers developed programmable RNA vaccines that work against Ebola, H1N1 influenza, and a common parasites in mice.

MIT engineers have developed a new type of easily customizable vaccine that can be manufactured in one week, allowing it to be rapidly deployed in response to disease outbreaks. So far, they have designed vaccines against Ebola, H1N1 influenza, and Toxoplasma gondii (a relative of the parasite that causes malaria), which were 100 percent effective in tests in mice.

The vaccine consists of strands of genetic material known as messenger RNA, which can be designed to code for any viral, bacterial, or parasitic protein. These molecules are then packaged into a molecule that delivers the RNA into cells, where it is translated into proteins that provoke an immune response from the host.

Stop Bashing G.M.O. Foods, More Than 100 Nobel Laureates Say

Genetically modified organisms and foods are a safe way to meet the demands of a ballooning global population, the 109 laureates wrote in a letter posted online and officially unveiled at a news conference on Thursday in Washington, D.C.


The world’s top scientists say opponents of genetically modified foods are standing in the way of nutrition for people around the world.

A new experimental system sheds light on how memory loss may occur

Two interconnected brain areas — the hippocampus and the entorhinal cortex — help us to know where we are and to remember it later. By studying these brain areas, researchers at Baylor College of Medicine, Rice University, The University of Texas MD Anderson Cancer Center and the National Cancer Institute have uncovered new information about how dysfunction of this circuit may contribute to memory loss in Alzheimer’s disease. Their results appear in Cell Reports.

“We created a new mouse model in which we showed that spatial memory decays when the entorhinal cortex is not functioning properly,” said co-corresponding author Dr. Joanna Jankowsky, associate professor of neuroscience at Baylor. “I think of the entorhinal area as a funnel. It takes information from other sensory cortices — the parts of the brain responsible for vision, hearing, smell, touch, and taste — and funnels it into the . The hippocampus then binds this disparate information into a cohesive memory that can be reactivated in full by recalling only one part. But the hippocampus also plays a role in spatial navigation by telling us where we are in the world. These two functions converge in the same cells, and our study set out to examine this duality.”

The new mouse model was genetically engineered to carry a particular surface receptor on the cells of the entorhinal cortex. When this receptor was activated by administering the drug ivermectin to the mice, the cells of the entorhinal cortex silenced their activity. They stopped funnelling information to the hippocampus. This system allowed the scientists to turn off the entorhinal cortex, and to determine how this affected hippocampal function.

The future of storage may be in DNA

Definitely been seeing great research and success in Biocomputing; why I have been looking more and more in this area of the industry. Bio/ medical technology is our ultimate future state for singularity. It is the key that will help improve the enhancements we need to defeat cancer, aging, intelligence enhance, etc. as we have already seen the early hints already of what it can do for people, machines and data, the environment and resources. However, a word of caution, DNA ownership and security. We will need proper governance and oversight in this space.


undefined © iStock/ Getty Images undefined How much storage do you have around the house? A few terabyte hard drives? What about USB sticks and old SATA drives? Humanity uses a staggering amount of storage, and our needs are only expanding as we build data centers, better cameras, and all sorts of other data-heavy gizmos. It’s a problem scientists from companies like IBM, Intel, and Microsoft are trying to solve, and the solution might be in our DNA.

A recent Spectrum article takes a look at the quest to unlock the storage potential of human DNA. DNA molecules are the building blocks of life, piecing our genetic information into living forms. The theory is that we can convert digital files into biological material by translating it from binary code into genetic code. That’s right: the future of storage could be test tubes.

In April, representatives from IBM, Intel, Microsoft, and Twist Bioscience met with computer scientists and geneticists for a closed door session to discuss the issue. The event was cosponsored by the U.S. Intelligence Advanced Research Projects Activity (IARPA), who reportedly may be interested in helping fund a “DNA hard drive.”

How molecules can do statistics

Mobile phones have become commonplace. Modern communication devices like mobile phones need to exchange huge amounts of information. However, what is hidden underneath the elegantly shaped plastic casings is quickly forgotten: Complex signal processors constantly fighting against noise and steadily adapting themselves to changing environment.

But noise and changing environmental conditions do not only affect electrical circuits. In synthetic biology scientists are facing similar problems. However, in synthetic biology a methodology to deal with noise does not exist yet. Prof. Mustafa Khammash and Christoph Zechner of the Department of Biosystems Science and Engineering have studied how conventional signal processors can be translated into biochemical processes — built and operated inside living cells.

A major limitation in engineering biological circuits is that host cells — even if they are genetically identical — are never the same. For instance, cell A might be in a different cell-cycle stage or have more ribosomes available than cell B. Therefore, the same synthetic circuit may behave very differently in each of these two cells. In extreme cases, only a small fraction of cells might show the correct behavior, while the remaining cells act unpredictably. This is referred to as context-dependency.

Scientific Innovation Needs the European Union to Succeed

My new Psychology Today story on BREXIT and the EU:


Scientific innovation doesn’t just happen on its own. It takes stable economies, free societies, and open-minded governments. The best environment for science to thrive in is that of collaborating groups incentivized to communicate and cooperate with one another. This is precisely what the European Union is.

And now, more than ever, the union of Europe is needed—because we are crossing over into the transhumanist age, where radical science and technology will engulf our lives and challenge our institutions. Robots will take 75% of the jobs in the next 25 years. CRISPR gene editing technology will allow us to augment our intelligence, perhaps doubling our IQ. Bionic organs will stave off death, allowing 200 year lifespans.

The science and technology coming in just the next two decades will cause unprecedented challenges to humanity. Most of the world will get chip implants— I have one —to assist with quick payments, emergency tracking, and to replace archaic accessories like car keys. We’ll also all use genetic therapies to cure cancer, heart disease, Alzheimer’s, and even aging. And robots will be ubiquitous—driving us everywhere, homeschooling our children, and maybe even becoming preferred sexual partners.

Genetic algorithms can improve quantum simulations

(Phys.org)—Inspired by natural selection and the concept of “survival of the fittest,” genetic algorithms are flexible optimization techniques that can find the best solution to a problem by repeatedly selecting for and breeding ever “fitter” generations of solutions.

Now for the first time, researchers Urtzi Las Heras et al. at the University of the Basque Country in Bilbao, Spain, have applied genetic algorithms to digital and shown that genetic algorithms can reduce quantum errors, and may even outperform existing optimization techniques. The research, which is published in a recent issue of Physical Review Letters, was led by Ikerbasque Prof. Enrique Solano and Dr. Mikel Sanz in the QUTIS group.

In general, quantum simulations can provide a clearer picture of the dynamics of systems that are impossible to understand using conventional computers due to their high degree of complexity. Whereas computers calculate the behavior of these systems, quantum simulations approximate or “simulate” the behavior.

Approved: First Ever Human Trials Involving CRISPR Gene Editing

Excellent!!! Cannot wait until we eradicate cancer, MS, Parkinson, Dystonia, Cystic-Fibrosis, LGD, etc.


A team of Physicians at the University of Pennsylvania’s School of Medicine now has their project of modifying the immune cells of 18 different cancer patients with the CRISPR-Cas9 system approved by the National Institute of Health.

CRISPR is the gift that keeps on giving—when it’s not fighting blindness, tackling HIV, or even recording real-time immune responses, it is taking on the emperor of all maladies: cancer.

But what’s even more fascinating about this use of CRISPR is that the National Institute of Health’s (NIH) Recombinant DNA Research Advisory Committee (RAC) has approved the first-ever use of CRISPR in human cancer therapy, a monumental step in the history of the gene-editing technology.

A federal panel just gave the green light to use gene editing on humans

Scientists are one step closer to using CRISPR gene editing on humans, with a US federal advisory panel approving the use of the technique for a study led by the University of Pennsylvania.

The scientists are seeking to use the CRISPR-Cas9 technique to create genetically altered T cells – white blood cells that play an important role in our immune system – that are more effective at fighting cancer cells in patients with melanoma, multiple myeloma, and sarcoma.

“Our preliminary data suggests that we could improve the efficacy of these T cells if we use CRISPR,” lead researcher Carl June told the National Institute of Health’s (NIH) Recombinant DNA Advisory Committee (RAC) on Tuesday.

/* */