Toggle light / dark theme

Scientists have successfully created mice with significantly longer telomeres than normal, resulting in a drop in molecular ageing, without using genetic manipulation.

Telomeres, which are found at the end of all animals’ chromosomes, are thought to be vital to ending ageing, as their shortening as we age is a key factor in cellular ageing and the onset of age-related disease. However, when they are lengthened beyond normal levels in mice, they have the precise opposite effect, protecting against ageing and related diseases, and increasing lifespan.

The mice, which are chimeras carrying both regular and “hyper-long” telomeres, were created using a technique based on epigenic changes, where embryonic stem cells are expanded in vitro, prompting changes to telomeres.

Read more

The cells with hyper-long telomeres in these mice appear to be perfectly functional. When the tissues were analysed at various moments (0, 1, 6 and 12 months of life), these cells maintained the additional length scale (they shortened over time but at a normal rhythm), accumulated less DNA damage and had a greater capacity to repair any damage. In addition, the animals presented a lower tumour incidence than normal mice.

These results show that pluripotent stem cells that carry hyper-long telomeres can give rise to organisms with telomeres that remain young at the molecular level for longer. According to the authors, this “proof of concept means that it is possible to generate adult tissue with longer telomeres in the absence of genetic modifications”.


The Telomeres and Telomerase Group at the Spanish National Cancer Research Centre (CNIO), in collaboration with the Centre’s Transgenic Mice Core Unit, has succeeded in creating mice in the laboratory with hyper-long telomeres and with reduced molecular ageing, avoiding the use of what to date has been the standard method: genetic manipulation. This new technique based on epigenetic changes that is described today in the pages of Nature Communications, avoids the manipulation of genes in order to delay molecular ageing. The study also underlines the importance of this new strategy in generating embryonic stem cells and iPS cells with long telomeres for use in regenerative medicine.

Telomeres (the protective structures located at the ends of chromosomes) are essential to the stability of our genetic material and to maintain the “youthful state” of our and of our bodies. However, get shorter as we age. Once they reach a critical length, cells enter a state of senescence or die. This is one of the molecular causes of cellular ageing and of the emergence of ageing-related diseases.

ENJOY!!! 2045 A.D. Cybernetically enhanced beings are in control of society. A new genetic disease is making humans reject their own organs, forcing one man to steal cybernetic implants from others to survive. By director Nguyen-Anh Nguyen.

Temple is a concept for a feature film project, produced by the team of the Akira Project.

For media/financing enquiries contact: [email protected]

**Check out this class by Anh about indie filmmaking and how he made the Akira Project and Temple. http://skl.sh/anh

Daniel G. Nocera, the Harvard professor who made headlines five years ago when he unveiled an artificial leaf, recently unveiled his latest work: an engineered bacteria that converts hydrogen and carbon dioxide into alcohols and biomass. One can be used directly as fuel to power vehicles that run on conventional fuels, while the other can be burned for energy.

Read more

The use of next-generation gene sequencing in newborns in neonatal intensive care units (NICUs) may improve the diagnosis of rare diseases and deliver results more quickly to anxious families, according to new research in CMAJ (Canadian Medical Association Journal).

“Next-generation sequencing has the potential to transform the practice of clinical genetics rapidly,” writes Dr. David Dyment, Children’s Hospital of Eastern Ontario (CHEO), with coauthors. “In particular, newborns admitted to the NICU with rare and complex diseases may benefit substantially from a timely molecular diagnosis through next-generation sequencing.”

Children with suspected rare genetic diseases usually undergo a battery of tests to determine a molecular diagnosis. Current practice involves testing of specific genes or a panel of genes, and these tests are often done outside the country because of limited availability within Canada. This means it may be months or even years before a diagnosis is made.

Read more

Interesting.


The research, published in Nature Structural and Molecular Biology, explains how the gene encourages the attachment of the protein, ubiquitin, to other proteins and plays a vital role in DNA repair. Should the results be confirmed by further studies, it is possible that patients with certain genetic changes in BRCA1 could be identified as being at higher risk of breast and ovarian cancer.

Read more

My new article for Vice Motherboard on extreme biohacking that compares the Uncanny Valley to Speciation Syndrome:


Transhumanism tech like CRISPR, 3D printing, and coming biological regeneration of limbs will not only change lives for those that have deformities, but it will change how we look at things like a person with a three-foot tail and maybe even a second head.

At the core of all this is the ingrained belief that the human being is pre-formed organism, complete with one head, four limbs, and other standard anatomical parts. But in the transhumanist age, the human being should be looked at more like a machine—like a car, if you will: something that comes out a particular way with certain attributes, but then can be heavily modified. In fact, it can be rebuilt from scratch.

In the future, there may even be walk-in clinics where people can go to have various gene treatments done to affect their bodies. Already, we have IVF centers where people can use radical tech to privately get pregnant—and also control and monitor various stages of a child’s birth. Eventually, if government allows it, gene editing centers will also offer a multitude of designer baby traits, some which also would come via CRISPR. We might even eventually use artificial wombs for the whole process.

Ubiquitous, mobile supercomputing. Artificially-intelligent robots. Self-driving cars. Neuro-technological brain enhancements. Genetic editing. The evidence of dramatic change is all around us and it’s happening at exponential speed.

Previous industrial revolutions liberated humankind from animal power, made mass production possible and brought digital capabilities to billions of people. This Fourth Industrial Revolution is, however, fundamentally different. It is characterized by a range of new technologies that are fusing the physical, digital and biological worlds, impacting all disciplines, economies and industries, and even challenging ideas about what it means to be human.

http://www.weforum.org/

Read more

Awesome.


Researchers have developed a new gene editing tool that is more efficient and easier to use. CRISPR-EZ addresses the issue of target RNA accuracy and embryo viability in IVF transgenic mice.

( andrew modzelewski/lin he | university of california berkeley )

CRISPR gene editing has been the subject of many researchers around the world because of its great potential in the study human genetic disease. But more than that, scientists have high regard for this tool because it can help cure complex and debilitating diseases like dementia and cancer.

Not surprised;


A long line of research links poverty and depression. Now, a study by Duke University scientists shows how biology might underlie the depression experienced by high-risk adolescents whose families are socio-economically disadvantaged.

The study, published May 24, 2016 in the journal Molecular Psychiatry, combined genetics, brain imaging and behavioral data gathered as adolescents were followed for more than three years as part of a larger study.

The results are part of a growing body of work that may lead to biological predictors that could guide individualized depression-prevention strategies.