Toggle light / dark theme

This is an interesting conjecture.


We may be able to keep our gut in check after all. That’s the tantalizing finding from a new study published today that reveals a way that mice—and potentially humans—can control the makeup and behavior of their gut microbiome. Such a prospect upends the popular notion that the complex ecosystem of germs residing in our guts essentially acts as our puppet master, altering brain biochemistry even as it tends to our immune system, wards off infection and helps us break down our supersized burger and fries.

In a series of elaborate experiments researchers from Harvard Medical School and Brigham and Women’s Hospital discovered that mouse poop is chock full of tiny, noncoding RNAs called microRNAs from their gastrointestinal (GI) tracts and that these biomolecules appear to shape and regulate the microbiome. “We’ve known about how microbes can influence your health for a few years now and in a way we’ve always suspected it’s a two-way process, but never really pinned it down that well,” says Tim Spector, a professor of genetic epidemiology at King’s College London, not involved with the new study. “This [new work] explains quite nicely the two-way interaction between microbes and us, and it shows the relationship going the other way—which is fascinating,” says Spector, author of The Diet Myth: Why the Secret to Health and Weight Loss Is Already in Your Gut.

What’s more, human feces share 17 types of microRNAs with the mice, which may portend similar mechanisms in humans, the researchers found. It could also potentially open new treatment approaches involving microRNA transplantations. “Obviously that raises the immediate question: ‘Where do the microRNAs come from and why are they there?,’” says senior author Howard Weiner, a neurologist at both Harvard and Brigham. The work was published in the journal Cell Host & Microbe.

Early detection by Grail (leveraging illumina’s gene sequencing technology) looks promising. This truly will be beneficial for early detection. And, I will be very interested in seeing how it benefits those who are genetically pre-disposed to cancer related gene mutations especially around Esaphogus, Glioblastoma, and Pancreatic cancers since these are often hard to detect in their earliest stages.

Read more

Wow — now, I know who to blame for my hay fever allergy.


If you want someone to thank for your immunity to a whole host of pathogens — or, someone to blame for your allergies — look no further than Neanderthals.

Humans carry three important genes that hail from two ancient, human-like species: Neanderthals and Denisovans, both of which have been extinct for tens of thousands of years.

The new finding, published Thursday in the American Journal of Human Genetics, points to a growing body of evidence of interbreeding between humans and other archaic species.

Dr Millers paper here hits the nail on the head for me about aging research and how we can speed it up.

“The time spent by gerontologists debating whether aging is a single process or many would be better devoted to trying to figure out the mechanistic links between the master clock whose existence is strongly suggested by the unitarian argument and the many cell-specific, organ-specific, and organism-wide processes that march in crude synchrony at species-specific rates.”

Yes! This is exactly the attitude to take. Too much debate and argument instead of buckling down and getting the research done to prove or disprove aging hypotheses. Cut to the chase and lets just do it.


However, in recent decades, scientific researchers in the field of aging, have found that it is indeed possible to slow down aging in animal test subjects!
This can be done by various means, including dietary and genetic interventions.

One of the most noteworthy researchers in the field is Dr Richard Miller.

The MMTP introduces – Dr Richard A Miller.

Dr Richard Miller MD, PhD, Is a professor of pathology at Michigan University, director of the Nathan Shock centre for biological aging and director of the Paul F Glenn centre for aging research.

He graduated Haverford college in 1971 with a BA, then went on to gain an MD and PhD at Yale University.

Dr Miller has held his current position at Michigan University since 1990.
He has acted as advisor for both The National Institute On Aging, and The American Federation For Aging Research.

Read more

At one time or another, we’ve all been encouraged to “maximize our potential.” In a recent interview, Academic and Entrepreneur Juan Enriquez said that mankind is making progress toward expanding beyond its potential. And the changes, he believes, could be profound.

To illustrate the process, Enriquez theorized what might happen if we were to bring Charles Darwin back to life and drop him in the middle of Trafalgar Square. As Darwin takes out his notebook and starts observing, Enriquez suggested he would likely see what might appear to be a different species. Since Darwin’s time, humans have grown taller, and with 1.5 billion obese people, larger. Darwin might also notice some other features too that many of us take for granted — there are more senior citizens, more people with all their teeth, a lot fewer wrinkles, and even some 70-year-olds running in marathons.

“There’s a whole series of morphologies that are just different about our bodies, but we don’t notice it. We don’t notice we’ve doubled the lifespan of humans in the last century,” Enriquez said. “We don’t notice how many more informations (sic) come into a brain in a single day versus what used to come in in a lifetime. So, across almost every part of humanity, there have been huge changes.”

Part of the difference that Darwin would see, Enriquez noted, is that natural selection no longer applies as strongly to life and death as it once did. Further, random gene mutations that led to some advantages kept getting passed down to generations and became part of the species. The largest difference, however, is our ongoing move toward intelligent design, he said.

“We’re getting to the stage where we want to tinker with humans. We want to insert this gene so this person doesn’t get a deadly disease. We want to insert this gene so that maybe the person performs better on an 8,000 meter peak climb, or in sports, or in beauty, or in different characteristics,” Enriquez said. “Those are questions we never used to have to face before because there was one way of having sex and now there’s at least 17.”

According to Enriquez, the concept of evolving ourselves is an important one because we are the first and only species on earth that has deliberately taken control over the pattern of evolution of what lives and dies (Science Magazine seems to agree). The technologies we’re developing now towards this goal provide us with an instrument for the a potential longer survival of the species than might otherwise be possible.

Those notions, however, raise a number of moral and ethical questions. “What is humanity…where do we want to take it?” Enriquez poses. While he noted that it’s easy to project that tinkering with humanity will lead to a dystopic future, he remains cautiously optimistic about our potential.

“I think we’ve become a much more domesticated species. We’re far less likely to murder each other than we were 50 years ago, 100 years ago or 200 years ago. We have learned how to live together in absolutely massive cities,” Enriquez said. “I think we have become far more tolerant of other religions (and) other races. There are places where this hasn’t happened but, on the whole, life has gotten a whole lot better in the last two or three hundred years and as you’re looking at that, I think we will have the tolerance for different choices made with these very instruments, and I think that’s a good thing.”

As he looks at the future of evolving humanity, Enriquez sees reasons for a great deal of optimism in the realm of single gene modification, especially in the area of eradicating disease and inherited conditions. The consequences, however, are still an unknown.

“In the UK, there was a question, ‘Do we insert gene code into a fertilized egg to cure a deadly disease?’ That is a real question, because that would keep these babies from dying early from these horrendous diseases,” Enriquez said. “The consequences of that are, for the first time, probably in the next year, you’ll have the first child born to three genetic parents.”

The path toward evolving human intelligence in the near future isn’t as cut and dry, Enriquez said. Once we establish the implications and morality between governments, religious organizations, and the scientific community, there are still plenty of hurdles to clear.

“There have been massive studies in China and we haven’t yet identified genes correlated to intelligence, even though we believe intelligence has significant inherited capacity,” Enriquez said. “I think you have to separate reality from fiction. The ability to insert a gene or two, and really modify the intelligence of human beings, I think, is highly unlikely in the next decade or two decades.”

Rollins, who has a Ph.D. in veterinary medicine, took some time to talk about genetic engineering, the future of humanity and the ethical limits of science.

(This Q&A has been edited for length and clarity.)

Live Science: A quote from “The Bone Labyrinth” reads, “Research today has become more about seeing if something can be done versus judging if it should. It’s knowledge for the sake of knowledge, regardless of the impact on the world.” Is that you speaking? Is that what you personally believe?

James Rollins: Yes, I believe that. I think sometimes, the reach of science is faster than its capacity to grasp. Genetic engineering is changing the world so fast right now. The CRISPR-Cas9 technique can allow us to pluck a single DNA unit out and replace it with great precision. And one of the people I interviewed in the research for this book told me that we now have the ability to do germline editing, where anyone with a basic biology degree and familiarity with embryos can alter an embryo pretty easily. And that’s something that’s relatively new. It’s just in the last five to 10 years that that’s been developed.

Read more

Death is a disease.

Diseases can and will be cured.

Do the math. wink


Disease GWAS show substantial genetic overlap with longevity. Shown are results for coronary artery disease and Alzheimer’s disease. The y axis is the observed P values for longevity, and the x axis is the expected P values under the null hypothesis that the disease is independent of longevity. The cyan, blue and purple lines show the P values for longevity of the top 100, 250, and 500 disease SNPs from independent genetic loci, respectively. Red lines show the background distribution of longevity P values for all independent genetic loci tested in both the longevity and disease GWAS. The grey horizontal line corresponds to the threshold for nominal significance (P = 0.05) for longevity. Significance of enrichment was determined with the hypergeometric test. (credit: Kristen Fortney et al./PLOS Genetics)

A machine prototype called Farma can let you manufacture your daily prescription of drugs right in your own home. Designed by MIT Media Lab graduate Will Patrick, the concept tech features a green cylinder and uses blue-green algae that’s genetically engineered to produce pharmaceutical drugs.


In the future, you might be able to skip the pharmacy and, instead, make your treatments along with your morning breakfast.

Read more