Toggle light / dark theme

Researchers at Rice University have shown how they can hack the brains of fruit flies to make them remote controlled. The flies performed a specific action within a second of a command being sent to certain neurons in their brain.

The team started by genetically engineering the flies so that they expressed a certain heat-sensitive ion channel in some of their neurons. When this channel sensed heat, it would activate the neuron – in this case, that neuron caused the fly to spread its wings, which is a gesture they often use during mating.

The heat trigger came in the form of iron oxide nanoparticles injected into the insects’ brains. When a magnetic field is switched on nearby, those particles heat up, causing the neurons to fire and the fly to adopt the spread-wing pose.

So, I think I uncovered a treasure. The Killing Star by Charles Pellegrino and George Zebrowski was originally published 1995 and it paints a dark and seemingly plausible depiction of humanity’s potential future. This book is about several things genetic engineering and cloning, it’s about the destructive power of fanaticism, It’s about the over confidence and hubris of humanity, and that gets really hammered home in this book with all it’s references to the titanic, which has for a very long time been thought of as one of the greatest symbols of human hubris, it’s about AI, and when it goes to far, it’s about our over dependence on technology, it’s about humanity’s indefinite survival outside of earth, and most importantly, it’s about the devastating annihilation of the vast majority of the human race.

Join Dune Club!
https://twitter.com/DanikaXIX/status/1540394079069999106

Music: https://www.youtube.com/watch?v=63UR4xLiUNo.

Cover art: https://www.artstation.com/artwork/L3YP2w.

Scientists have demonstrated that a brain-penetrating candidate drug currently in development as a cancer therapy can promote regeneration of damaged nerves after spinal trauma.

The research used cell and animal models to show that when taken orally the candidate drug, known as AZD1390, can block the response to DNA

DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).

Researchers from Oxford Nanopore Technologies, Weill Cornell Medicine, and the New York Genome Center have created a new technique to evaluate the three-dimensional structure of the human DNA

DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).

Circa 2008


From endpoint fluorescence to melting curve analysis.

Today’s research on somatic, genetic and epigenetic variation in eukaryotic cells requires fast, accurate and cost-effective methods for screening large numbers of samples or loci in parallel. Variations identified by genomic sequencing or array studies need to be subsequently confirmed and validated.

Real-time PCR has become a well established technology for this purpose. The plate-based LightCycler 480 system offers a broad selection of methods and applications (Fig. 1).

Hibernation Biology & Applications In Human Health & Resilience — Dr. Dana K. Merriman, Ph.D., Distinguished Professor Emerita of Biology; Director of the Squirrel Colony, UW-Oshkosh.


Dr. Dana K. Merriman Ph.D. (www.uwosh.edu/facstaff/merriman/VaughanHome), is Distinguished Professor Emerita of Biology, and Director of the Squirrel Colony, at University of Wisconsin Oshkosh, and Adjunct Professor of Ophthalmology & Visual Sciences, Medical College of Wisconsin.

With her BA in Biological Science and her PhD in Physiology and Cell Biology, both from University of California-Santa Barbara, as well as having spent time as a Postdoctoral Fellow at University of Utah Health Sciences Center, a core focus of Dr. Merriman’s laboratory research over the years has been the development of a captive breeding colony of the 13-lined ground squirrels.

Research that was recently published in Scientific Reports presents the first human genome that has been successfully sequenced from a person who passed away in Pompeii, Italy, after Mount Vesuvius’ explosion in the year 79 CE. Only little segments of mitochondrial DNA

DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).