Toggle light / dark theme

Researchers think certain common viruses may trigger some autoimmune conditions—alone or in concert with other factors. A recent Office of Autoimmune Disease Research (OADR)-Office of Research on Women’s Health Science Talks series focused on understanding the triggers of autoimmunity and advancing research.

Almost 80 percent of people living with an autoimmune disease are women. It’s estimated there are 80–120 autoimmune diseases. These chronic and often debilitating diseases have no known cures. Some combination of genetics, immune regulation and the environment work together to form an “endotype” for each autoimmune disease patient, explained Dr. Judith James of the Oklahoma Medical Research Foundation.

Her presentation focused on lupus, or systemic lupus erythematosus (SLE), which disproportionately affects women. Nine women are diagnosed with SLE for every male. In SLE, the immune system attacks healthy tissue, causing inflammation and occasionally permanent damage.

One year of treatment with the targeted drug olaparib improves long-term survival in women with high-risk, early-stage breast cancer with mutations in BRCA1 or BRCA2 genes, new results from a major clinical trial show.

Ten years since the first patient was recruited, new findings from the phase III OlympiA trial – presented at San Antonio Breast Cancer Symposium (SABCS) 2024 – show that adding olaparib to standard treatment cuts the risk of cancer coming back by 35 per cent, and the risk of women dying by 28 per cent.

After six years, 87.5 per cent of patients who were treated with the drug were still alive compared with 83.2 per cent of those who were given the placebo pills.

Professor Andrew Tutt at The Institute of Cancer Research, London, and King’s College London is the global lead investigator and Chair of the Steering Committee for the OlympiA study, and was also involved in early laboratory research on PARP inhibitors such as olaparib, and their subsequent clinical development. The Breast International Group (BIG) coordinated the international OlympiA study, involving 671 study locations, globally across multiple partners. BIG coordinated the trial’s UK sites through the ICR Clinical Trials and Statistics Unit (ICR-CTSU).

Large-scale protein and gene profiling have massively expanded the landscape of cancer-associated proteins and gene mutations, but it has been difficult to discern whether they play an active role in the disease or are innocent bystanders.

In a study published in Nature Cancer, researchers at Baylor College of Medicine revealed a powerful and unbiased machine learning-based approach called FunMap for assessing the role of cancer-associated mutations and understudied proteins, with broad implications for advancing and informing therapeutic strategies.

“Gaining functional information on the genes and proteins associated with cancer is an important step toward better understanding the disease and identifying potential therapeutic targets,” said corresponding author Dr. Bing Zhang, professor of molecular and and part of the Lester and Sue Smith Breast Center at Baylor.

Published in Nature Communications, a new study led by the University of Minnesota Medical School and Duke University found that a DNA sequencing test for advanced prostate cancer patients can distinguish between patients with poor and favorable prognoses.

The new blood-based —called AR-ctDETECT—is designed to detect and analyze small fragments of tumor-derived DNA in the blood of certain with advanced, .

In this new study, the AR-ctDETECT test was used to analyze DNA from more than 770 from a phase 3 clinical trial of advanced prostate cancer patients. The test identified circulating tumor DNA (ctDNA) in 59% of patients with metastatic prostate cancer. Patients with detectable circulating tumor DNA had significantly worse overall survival compared to those without. These results demonstrate the potential of the AR-ctDETECT test to provide key genetic information to tailor treatments based on similar characteristics among patients.

New research reveals that centromeres, which are responsible for proper cell division, can rapidly reorganize over short time scales. Biologists at the University of Rochester are calling a discovery they made in a mysterious region of the chromosome known as the centromere a potential game-changer in the field of chromosome biology.

“We’re really excited about this work,” says Amanda Larracuente, the Nathaniel and Helen Wisch Professor of Biology, whose lab oversaw the research that led to the findings, which appear in PLOS Biology.

The discovery involves an intricate and seemingly carefully choreographed genetic tug-of-war between elements in the centromere, which is responsible for proper cell division. Instead of storing genes, centromeres anchor proteins that move chromosomes around the cell as it splits. If a centromere fails to function, cells may divide with too few or too many chromosomes.

Achieving the aggregation of different mutation types at multiple genomic loci and generating transgene-free plants in the T0 generation is an important goal in crop breeding. Although prime editing (PE), as the latest precise gene editing technology, can achieve any type of base substitution and small insertions or deletions, there are significant differences in efficiency between different editing sites, making it a major challenge to aggregate multiple mutation types within the same plant.

Recently, a collaborative research team led by Li Jiayang from the Institute of Genetics and Developmental Biology (IGDB) of the Chinese Academy of Science, developed a multiplex gene editing tool named the Cas9-PE system, capable of simultaneously achieving precise editing and site-specific random mutagenesis in rice.

By co-editing the ALSS627I gene to confer resistance to the herbicide bispyribac-sodium (BS) as a selection marker, and using Agrobacterium-mediated transient transformation, the researchers also achieved transgene-free gene editing in the T0 generation.

A new USC Stem Cell study published in the Proceedings of the National Academy of Sciences has identified key gene regulators that enable some deafened animals—including fish and lizards—to naturally regenerate their hearing. The findings could guide future efforts to stimulate the regeneration of sensory hearing cells in patients with hearing loss and balance disorders.

Led by first author Tuo Shi and co-corresponding authors Ksenia Gnedeva and Gage Crump at the Keck School of Medicine of USC, the study focuses on two cell types in the inner ear: the sensory cells that detect sound, and the that create an environment where sensory cells can thrive.

In highly regenerative species such as fish and lizards, supporting cells can also transform into replacement sensory cells after injury—a capacity absent in humans, mice and all other mammals.

Precious few garments have been made of spider silk. In 2012, a cape and shawl made from natural spider silk were displayed at the Victoria and Albert Museum, where visitors learned that the garments were the result of a unique project that spanned eight years and involved the harvesting of silk from 1.2 million spiders. In 2019, a rather less painstaking project utilized fibroin, the protein found in natural spider silk, to fabricate an outerwear jacket, North Face’s Moon Parka. Starting with fibroin meant that silk could be sourced from genetically modified bacteria, which are easier to work with than spiders. Nonetheless, the Moon Parka, which takes its name from the word moonshot, was never meant to be mass produced. It was available by lottery for just a limited time.

Museum pieces and moonshots are hardly synonymous with “mass production.” Is there another way to generate spider silk–based textiles, one that has more commercial potential? Yes, according to Kraig Biocraft Laboratories, which uses transgenic silkworms to produce lines of recombinant spider silk. The company plans to produce up to 10 metric tons of spider silk in 2025. Production of actual spider silk lines on this scale would allow textile manufacturers to test the silk on their own equipment.

It’s not just textiles that may benefit. Recombinant spider silk’s tensile strength, weight, and durability make it attractive for myriad applications, including tissue scaffolds and sutures in the biomedical field, as well as textiles and ballistic materials.