Toggle light / dark theme

In probability theory and statistics, a Markov chain or Markov process is a stochastic process describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, this may be thought of as, “What happens next depends only on the state of affairs now.” A countably infinite sequence, in which the chain moves state at discrete time steps, gives a discrete-time Markov chain (DTMC). A continuous-time process is called a continuous-time Markov chain (CTMC). Markov processes are named in honor of the Russian mathematician Andrey Markov.

Swarms of earthquakes have been jolting southern Italy with increasing intensity since 2022, threatening hundreds of thousands of people living atop a volcanic area known as Campi Flegrei, where the land experiences slow vertical movements.

While authorities debate disaster responses and evacuation protocols, researchers may have found a way to thwart the cyclic unrest altogether: by managing water runoff or lowering groundwater levels, thus reducing fluid pressure within the geothermal reservoir.

Through subsurface imaging and lab experiments, Stanford scientists have shown how pressure buildup from water and vapor in the reservoir under Campi Flegrei can lead to earthquakes when the caprock, or lid, seals.

What happens when trailblazing engineers and industry professionals team up? The answer may transform the future of computing efficiency for modern data centers.

Data centers house and use large computers to run massive amounts of data. Oftentimes, the processors can’t keep up with this workload because it’s taxing to predict and prepare instructions to carry out. This slows the flow of data. Thus, when you type a question into a , the answer generates more slowly or doesn’t provide the information you need.

To remedy this issue, researchers at Texas A&M University developed a new technique called Skia in collaboration with Intel, AheadComputing, and Princeton to help computer processors better predict future instructions and improve computing performance.

A groundbreaking discovery reveals how a hidden gene transfer between fungi and plants triggered Earth’s first ecosystems. This ancient process played a key role in the adaptation of plants to life on land.

If you’re wondering how artificial intelligence may begin to interact with our world on a more personal level, look no further than the landscape of sports. As the technology of machine learning becomes more mature and the need for human officiating becomes less necessary, sports leagues have found creative ways to integrate the concept of “computer referees” in ways we may not have initially expected.

Tennis, for example, has been a leading figure in adopting AI officiating. The Hawk-Eye System, introduced in the early 2000s, first changed tennis officiating by allowing players to challenge calls made by line judges. Hawk-Eye, which used multiple cameras and real-time 3D analysis to determine whether a ball was in or out, has today developed into a system called Electronic Line Calling Live, known as ELC. The new technology has become so reliable that the ATP plans to phase out line judges in professional tournaments by the summer of this year.

The Australian Open has taken this system a step further by testing AI to detect foot-faults. Utilizing skeletal tracking technology, the system monitors player movements to identify infractions, improving match accuracy and reducing human error. However, a glitch in the technology did make for a funny moment during this past year’s Australian Open when the computer speaker repeated “foot-fault” before German player Dominik Koepfer could even begin his serve.

The prefrontal cortex is critical for working memory, over a timescale of seconds. In this Review, Miller and Constantinidis examine how the prefrontal cortex facilitates the integration of memory systems across other timescales as well. In this framework of prefrontal learning, short-term memory and long-term memory interact to serve goal-directed behaviour.