Toggle light / dark theme

HD 20,794D, a planet six times the mass of Earth, orbits a Sun-like star just 20 light-years away. Its presence was confirmed after years of meticulous analysis, overcoming the limits of detection technology.

Although it lies in the habitable zone, its elliptical orbit presents challenges in determining its true potential for life. Future telescopes may soon provide deeper insights into its atmosphere, making this one of the most exciting exoplanet.

An exoplanet (or extrasolar planet) is a planet that is located outside our Solar System, orbiting around a star other than the Sun. The first suspected scientific detection of an exoplanet occurred in 1988, with the first confirmation of detection coming in 1992.

DeepSeek, TikTok, CapCut, Shein, Temu, BYD, DJI, Huawei — Chinese technology is everywhere and in many areas the country is challenging the former high-tech powerhouses.

It’s all down to an ambitious plan China set out 10 years ago. The Made in China 2025 project vowed to turn China from the world’s factory to the world’s innovator.

And according to experts – they have largely succeeded. So how did they do it and what does it mean for the rest of the world and the future of technology dominance? Our Cyber Correspondent, Joe Tidy, explains.

00:00 Introduction.
01:18 Made in China 2025
04:07 Sanctions.
05:35 Reactions.

Check out more videos on AI & Technology, here 👉🏽 https://www.youtube.com/playlist?list=PLz_B0PFGIn4e0fyBwDLpcmhlvfBn6H0Qx.

Find more of the best BBC World Service documentaries you can watch in less than 30 minutes here ➡️ https://www.youtube.com/playlist?list=PLz_B0PFGIn4cI2qSy69-3UkgBWaXGHRrx.

NASA has significantly lowered the risk of near-Earth asteroid 2024 YR4 as an impact threat to Earth for the foreseeable future. When first discovered, asteroid 2024 YR4 had a very small, but notable chance of impacting our planet in 2032. As observations of the asteroid continued to be submitted to the Minor Planet Center, experts at NASA Jet Propulsion Laboratory’s (JPL’s) Center for Near-Earth Object Studies were able to calculate more precise models of the asteroid’s trajectory and now have found there is no significant potential for this asteroid to impact our planet for the next century. The latest observations have further reduced the uncertainty of its future trajectory, and the range of possible locations the asteroid could be on Dec. 22, 2032, has moved farther away from the Earth.

There still remains a very small chance for asteroid 2024 YR4 to impact the Moon on Dec. 22, 2032. That probability is currently 1.7%.

NASA will continue to observe asteroid 2024 YR4 with observatories funded by its Planetary Defense Coordination Office, and NASA’s James Webb Space Telescope will observe the asteroid in March to further gain insights about its size for scientific purposes.

Experiments coupling light and sound reveal the surprising effect that measuring nothing can cool the vibrations of an object.

We use measurements to understand the world around us. With our eyes and ears, we constantly infer the state of our surroundings through the sights and sounds that reach us, allowing us to navigate our daily lives. While these “measurements” often focus on observing the presence of something, the absence of something also provides valuable information.

Researchers spanning Imperial College London, the University of Oxford, the University of Waterloo, the University of Leeds, and the University of Copenhagen have used the absence of scattered light to cool the motion of a tiny glass bead below room temperature.

Dr. Ashley Martin: “Our study reveals high nitrogen isotope values in 2.75-billion-year-old shallow water stromatolites, and lower nitrogen values in deeper marine sediments.”


What can volcanism on the early Earth teach us about the formation of life on our planet? This is what a recent study published in Nature Communications hopes to address as an international team of researchers investigated how volcanic activity billions of years ago could have influenced the Earth’s nitrogen cycle, thus influencing the development of marine life. This study has the potential to help researchers better understand the processes responsible for the development of life on early Earth, specifically in Earth’s oceans.

For the study, the researchers analyzed 2.5-billion-year-old samples of stromatolites, which are fossilized rock formations created by microorganisms, in southern Zimbabwe. The goal of the study was to ascertain a connection between nitrogen isotope patterns and an event known as the Great Oxidation Event that occurred approximately 2.5 billion years ago and is often hailed as a major turning point in the development of life on the Earth. During that time, most of the Earth’s land mass was underwater with volcanic activity occurring in the oceans. Therefore, the researchers found an interesting connection between volcanic activity and nitrogen levels that occurred simultaneously.