Toggle light / dark theme

Bringing metallurgy into the 21st century: Precisely shaped metal objects provide unprecedented alloy control

Caltech scientists have developed a method to create metallic objects of a precisely specified shape and composition, giving them unprecedented control of the metallic mixtures, or alloys, they create and the enhanced properties those creations will display. Want a stent that is biocompatible and mechanically robust? How about strong but lightweight satellite components that can operate in space for decades?

Superconductivity’s halo: Theoretical physicist helps map rare high-field phase

A puzzling form of superconductivity that arises only under strong magnetic fields has been mapped and explained by a research team including Andriy Nevidomskyy, professor of physics and astronomy at Rice University. Their findings, published in Science, detail how uranium ditelluride (UTe2) develops a superconducting halo under strong magnetic fields.

Experimental Demonstration of Attoseconds-at-Harmonics at the SASE3 Undulator of the European XFEL

We report on observations of single spike spectra (3–13% of events) upon employing a previously proposed method for single spike generation via harmonic conversion. The method was tested at the soft X-ray SASE3 undulator of the European XFEL. The first part of the undulator allows one to amplify bunching at the fundamental as well as the higher harmonics. The downstream undulator is tuned to a harmonic, the fourth in our case, to amplify pulses with a shorter duration. We estimate the generated pulse duration within such a subset of short pulses at a level of 650 as. Considering the demonstrated probability of single spike events, this method is attractive for high repetition-rate free electron lasers.

/* */