Glaciers that are within three miles of a volcano move nearly 50% quicker than average, a new study has found, which could help create early warning of future eruptions.
“For an existing barrel roof stadium, renovating the opening will be a good solution. Reworking the roof will be much costlier,” Jayanarasimhan explained.
Jayanarasimhan hopes these findings will help the sports community realize that there are better solutions for mitigating wind drift beyond just turning off the ventilation.
“We expect that with this pace of research down the road, wind drift complaints will be negligible from badminton tournaments,” said Jayanarasimhan. “We are preparing to study other roof configurations [and] the deviation of the shuttlecock trajectory in different wind directions and conduct a case study of the existing indoor badminton stadiums.”
Using laser spectroscopy, the team were able to measure the nuclear radius of several isotopes of nobelium and fermium.
Unlike lighter regions of the nuclear chart, where upward kinks are observed crossing shell closures, the trend across a key neutron number is shown to be smooth. This indicates that nuclear shell effects due to a few nucleons have a reduced influence as the so-called superheavy elements are approached, and the nuclei behave more like a deformed liquid drop.
Researchers from the University of Liverpool’s Department of Physics, Professor Bradley Cheal and Dr. Charlie Devlin, contributed to the nobelium experimental activities of the study.