Toggle light / dark theme

Gene Expression Predicts Therapeutic Efficacy

The immune system works to identify and target invading pathogens. Specifically, our bodies work to get rid of any harmful infections by employing a two-part immune response. The first wave of immunity is the innate immune system. This initial reaction is broad and non-specific with innate cells circulating throughout the body to detect foreign pathogens. These cells that are involved include neutrophils, macrophages, eosinophils, basophils, and dendritic cells. Once cells detect an issue, they alert the rest of the body to completely filter out the infection. Importantly, the second wave of immunity, or the adaptive immune system, elicits a strong, specific response that target pathogens the innate immune system cannot neutralize.

Adaptive immunity builds to generate robust protection against aggressive diseases. The cells that make up this response include B and T cells. B cells are mainly responsible for generating antibodies to neutralize and signal infections throughout the body. T cells are the drivers that get rid of disease. T cell activity destroys infected cells and other pathogens lingering throughout the body or site of infection. The adaptive immune response is also critical for immune memory. Once someone experiences a disease and recovers, adaptive immune cells will remember that pathogen next time it enters the body — this is how vaccines work. A patient is injected with a non-harmful virus to expose the immune system. Immediately, the body will respond and destroy the virus. However, a few T cells will also be generated to targeted similar viruses in the future. As a result, when a patient is exposed to the infection again, they will be protected and not experience symptoms.

T cells are critical for any disease or infection, including cancer. Many immunotherapies currently being develop involve activating and directing T cells to the site of the tumor. However, immunotherapies have limited efficacy due to various mechanisms around the tumor that suppress immunity. Scientists are working to understand T cell biology to develop better immunotherapies and more accurately predict treatment outcomes in patients.

How social norms evolved over time and differ across countries

When humans interact with each other and engage in everyday activities, they typically follow various undefined rules, also known as social norms. These rules include things like greeting acquaintances in specific ways upon meeting them, not interrupting others when they speak, waiting in line for one’s turn at the post office, and countless other behaviors.

Social norms can differ significantly across and geographical regions. In addition, these unspoken rules are known to have changed considerably across history, as societies evolved and the values guiding people’s behavior changed.

Researchers at the Institute for Future Studies in Stockholm and other institutes in Sweden recently carried out a large-scale study investigating the evolution of social norms across time, while also exploring the similarities and differences between the norms in 90 societies worldwide. Their paper, published in Communications Psychology, identifies a common trend in the recent evolution of norms in most societies, while also uncovering characteristic patterns in different types of societies.

Physicists create the smallest pixel in the world (so far)

Smart glasses that display information directly in the field of vision are considered a key technology of the future—but until now, their use has often failed due to cumbersome technology. However, efficient light-emitting pixels are ruled out by classical optics if their size is reduced to the wavelength of the emitted light.

Now, physicists at Julius-Maximilians-Universität Würzburg (JMU) have taken a decisive step toward luminous miniature displays and, with the help of , have created the world’s smallest to date.

A research group led by Professors Jens Pflaum and Bert Hecht was responsible for the work; the group has now published the results of their work in Science Advances.

AI Snake Oil: What Artificial Intelligence Can Do, What It Can’t, and How to Tell the Difference

On April 17, 2025, the MIT Shaping the Future of Work Initiative and the MIT Schwarzman College of Computing welcomed Arvind Narayanan, Professor of Computer Science at Princeton University, to discuss his latest book, \.

Scientists capture real-time melting of 2D skyrmion lattices using magnetic fields

What occurs during the melting process in two-dimensional systems at the microscopic level? Researchers at Johannes Gutenberg University Mainz (JGU) have explored this phenomenon in thin magnetic layers.

“By utilizing skyrmions, i.e., miniature magnetic vortices, we were able to directly observe, for the first time, the transition of a two-dimensional ordered structure into a disordered state at the in real time,” explained Raphael Gruber, who conducted the research within the working group of Professor Mathias Kläui at the JGU Institute of Physics.

The findings, published in Nature Nanotechnology, are fundamental to a deeper understanding of melting processes in two dimensions and the behavior of skyrmions, which may revolutionize future data storage technologies.

/* */