Toggle light / dark theme

What happens when technology eliminates scarcity? As our real-world tech oligarchs promise a utopian future with AI reshaping society, we’ll examine what we’re truly sacrificing at the altar of progress.

✉️ Free AI Resources: https://mindfulmachines.ai/
🤙Connect One-on-One: https://mindfulmachines.ai/call.

References.

The Orville: Future Unknown (2022)
https://orville.fandom.com/wiki/Future_Unknown.

The Ones Who Walk Away from Omelas (1973)
https://www.goodreads.com/book/show/92625.The_Ones_Who_Walk_Away_from_Omelas.

The Ones Who Stay and Fight (2018)

A new study of complex systems supports a growing trend that focuses more on analyzing a system’s collective behavior rather than on trying to uncover the underlying interaction mechanisms.

When observing a flock of starlings swirling through the sky in perfect coordination—a phenomenon known as murmuration—we witness the elegant interplay of individual actions creating collective behavior. In trying to understand these mesmerizing patterns, researchers can isolate simple rules based on an individual bird’s field of vision and distance to its neighbors, but there’s always a question of whether the model is really capturing the processes behind the bird interactions (Fig. 1). The problem is a general one in complex systems research, and it comes down to distinguishing mechanisms (the rules governing interactions) from behaviors (the observable patterns that emerge).

A good way to study mechanisms versus behaviors is through representative networks of interacting individuals, or nodes. Traditionally, researchers have focused on pairwise interactions, but many systems also include higher-order interactions between multiple nodes. What impact these higher-order mechanisms have on behaviors has been unclear. Thomas Robiglio from the Central European University in Vienna and colleagues have now addressed this issue by considering networks with higher-order interactions and evaluating the resulting behaviors in terms of statistical dependencies between the node values [1]. The researchers identified higher-order behavioral signatures that—unlike their pairwise counterparts—revealed the presence of higher-order mechanisms.

Europe’s physics lab CERN is planning to build a particle-smasher even bigger than its Large Hadron Collider to continue searching for answers to some of the universe’s tiniest yet most profound mysteries.

The Future Circular Collider (FCC) has not yet received a political green light or funding. Even if approved, the vast project would not start operations until the 2040s—or be completed until the end of the century.

CERN’s Large Hadron Collider (LHC), which famously discovered the “God particle” Higgs boson and is currently the world’s powerful particle accelerator, is expected to have run its course by the 2040s.

Most job candidates know to dress nicely for Zoom interviews and to arrange a professional-looking background for the camera. But a new Yale study suggests they also ought to test the quality of their microphones.

A tinny voice caused by a cheap mic, researchers say, could sink their chances.

Through a series of experiments, the study demonstrates that tinny speech—a thin, metallic sound—during video conferences can have surprisingly deep social consequences, leading listeners to lower their judgments of a speaker’s intelligence, credibility, and romantic desirability. It can also hurt an individual’s chances of landing a job.

These nano-PeLEDs feature pixel lengths as small as 90 nanometers, enabling an unprecedented pixel density of 127,000 pixels per inch (PPI). For comparison, a typical 27-inch 4K gaming monitor has a pixel density of just 163 PPI.

“Making electronic devices smaller is an everlasting pursuit for scientists and engineers,” said Professor Di Dawei, Deputy Director of the International Research Center for Advanced Photonics at Zhejiang University.

He explained that while micro-LEDs based on III-V semiconductors are considered state-of-the-art, their efficiency drops sharply when pixel sizes fall below 10 micrometers – a limitation that has hindered their use in ultra-high-resolution displays.