Toggle light / dark theme

Envision this possible future clinical scenario: a breast cancer patient and her physicians are deciding on the best possible treatment. Their decision is informed by a comprehensive molecular profile of the patient’s cancer samples that predicts the most likely response of the cancer to treatment.

If the profile predicts a high likelihood of a complete positive response and long-term freedom from relapse, then this treatment would be the preferred choice. But if the profile predicts that the tumor would likely be resistant to treatment, alternative treatments must be implemented.

Although this situation is not yet a reality, a team led by researchers at Baylor College of Medicine and the Broad Institute of Massachusetts Institute of Technology and Harvard has taken significant steps in that direction. They report in Cell Reports Medicine that conducting an integrated proteogenomic profiling of cancer cells, which combines the analysis of DNA, RNA, protein and phosphoprotein data, revealed two novel indicators of tumor response to treatment and alternative therapeutic targets for treatment-resistant HER2+ .

A quick overview of some of the most popular fictional architectural styles.
Which style did I miss? Let me know down below 👇

Please like and subscribe if you enjoyed this video. It helps a lot!
If you want to support me even more, consider becoming a member: https://www.youtube.com/channel/UCsaIQHXEMymxrg4tMUkwJ1g/join.

00:00 Cyberpunk.
00:37 Steampunk.
01:14 Dieselpunk.
01:46 Atompunk.
02:22 Solarpunk.
02:58 Biopunk.
03:33 Post-Apocalyptic Salvagecore.
04:07 Brutalist Dystopia.
04:40 Arcology.
05:16 Space-Opera Modernism.
05:52 Dark Fantasy.
06:25 Clockpunk.
06:58 Teslapunk.
07:29 Afrofuturist.
08:02 Subnautical Artifice

Contrary to the popular saying, rules aren’t meant to be broken, as they are foundational to society and exist to uphold safety, fairness and order in the face of chaos. The collective benefits of rule-following are well established, but individual incentives are often unclear. Yet, people still comply, and the reasons why are pieces of a puzzle that researchers of human behavior have been trying to piece together for years.

A recent study published in Nature Human Behavior explored the behavioral principles behind why people follow rules using a newly designed framework called CRISP. A series of four online experiments based on the framework involving 14,034 English-speaking participants, revealed that the majority (55%–70%) of participants chose to follow arbitrary rules—even when the compliance was costly, they were anonymous and violations had no adverse effects on others.

This proposed CRISP system explains rule conformity © as a function of four components: R—intrinsic respect for rules, independent of others’ behavior; I—extrinsic incentives, such as the threat of punishment for breaking rules; S—social expectations about whether others will follow the rule or believe one should; and P—, which matter when rule-following affects the well-being of others.

Water is everywhere and comes in many forms: snow, sleet, hail, hoarfrost, and so on. However, despite water being so commonplace, scientists still do not fully understand the predominant physical process that occurs when water transforms from liquid to solid.

Now, in an article published in the Journal of Colloid and Interface Science, researchers from the Institute of Industrial Science, The University of Tokyo, have carried out a series of molecular-scale simulations to uncover why ice forms more easily on surfaces than in bodies of water.

While it is common knowledge that water freezes at 0°C (32°F), water does not instantly turn into ice the moment this temperature is reached. Instead, begin forming at tiny “nuclei” and spread throughout the body of water in a process called nucleation. Lower temperatures promote nucleation events and hence speed up the freezing process. Although, at the , other factors can also play a role.