Toggle light / dark theme

New era of magnetization: Research sheds light on future applications in spintronics and valleytronics

Altermagnets, which exhibit momentum-dependent spin splitting without spin–orbit coupling (SOC) or net magnetization, have recently attracted significant international attention.

A team led by Prof. Liu Junwei from the Department of Physics at the Hong Kong University of Science and Technology (HKUST), along with their experimental collaborators, published their latest research findings in Nature Physics, which unveiled the first experimental observation of a two-dimensional layered altermagnet, validating the in Nature Communications made by Prof. Liu in 2021.

The realization and control of spin-polarized electronic states in solids are crucial for spintronics for encoding and processing information. Spin polarization is typically generated by coupling an electron’s spin to other degrees of freedom, such as orbital or .

Misfolded alpha-synuclein protein as diagnostic biomarker for PD

A new gene therapy reversed heart failure in pigs by repairing heart function through cBIN1, showing major promise for future treatment.

A new gene therapy has been shown to reverse the effects of heart failure and restore heart function in a large animal model. The treatment increases the heart’s ability to pump blood and significantly improves survival rates. A paper describing the results calls it “an unprecedented recovery of cardiac function.”

Heart failure is currently irreversible. Without a heart transplant, most treatments aim only to reduce the heart’s workload and slow the progression of the disease. If this gene therapy produces similar outcomes in future clinical trials, it could offer a way to repair the hearts of one in four people expected to develop heart failure during their lifetime.

Markov chain

In probability theory and statistics, a Markov chain or Markov process is a stochastic process describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, this may be thought of as, “What happens next depends only on the state of affairs now.” A countably infinite sequence, in which the chain moves state at discrete time steps, gives a discrete-time Markov chain (DTMC). A continuous-time process is called a continuous-time Markov chain (CTMC). Markov processes are named in honor of the Russian mathematician Andrey Markov.

Scientists discover key to taming earthquake risk at Italy’s Campi Flegrei caldera

Swarms of earthquakes have been jolting southern Italy with increasing intensity since 2022, threatening hundreds of thousands of people living atop a volcanic area known as Campi Flegrei, where the land experiences slow vertical movements.

While authorities debate disaster responses and evacuation protocols, researchers may have found a way to thwart the cyclic unrest altogether: by managing water runoff or lowering groundwater levels, thus reducing fluid pressure within the geothermal reservoir.

Through subsurface imaging and lab experiments, Stanford scientists have shown how pressure buildup from water and vapor in the reservoir under Campi Flegrei can lead to earthquakes when the caprock, or lid, seals.

Skia technique decodes ‘shadow branches’ to boost data center efficiency

What happens when trailblazing engineers and industry professionals team up? The answer may transform the future of computing efficiency for modern data centers.

Data centers house and use large computers to run massive amounts of data. Oftentimes, the processors can’t keep up with this workload because it’s taxing to predict and prepare instructions to carry out. This slows the flow of data. Thus, when you type a question into a , the answer generates more slowly or doesn’t provide the information you need.

To remedy this issue, researchers at Texas A&M University developed a new technique called Skia in collaboration with Intel, AheadComputing, and Princeton to help computer processors better predict future instructions and improve computing performance.

/* */