Toggle light / dark theme

Early ancestral bottleneck could’ve spelled the end for modern humans

Humanity came close to extinction 800,000 years ago. Only 1,280 of our ancestors survived.

A recent study published in Science suggests that a catastrophic “ancestral bottleneck” reduced the global population to just 1,280 breeding individuals, wiping out 98.7% of the early human lineage.

This population crash, lasting about 117,000 years, likely resulted from extreme climate shifts, prolonged droughts, and dwindling food sources.

Using a groundbreaking genetic analysis method called FitCoal, researchers analyzed modern human genomes to trace this dramatic decline, potentially explaining a gap in the African and Eurasian fossil record.

Despite the near-extinction, this bottleneck may have played a crucial role in shaping modern humans. Scientists believe it contributed to a key evolutionary event—chromosome fusion—which may have set Homo sapiens apart from earlier hominin species, including Neanderthals and Denisovans. The study raises intriguing questions about how this small population survived, possibly through early fire use and adaptive intelligence. Understanding this ancient crisis helps scientists piece together the story of human evolution and the resilience that allowed our species to thrive against all odds.

Learn more.


Powered by renewable energy, microbes turn CO2 into protein and vitamins

It turns out acetate-fed yeast produces about the same amount of vitamin B9 as those that eat sugar. Just 6 grams, or 0.4 tablespoon, of the harvested dried yeast meets the daily vitamin B9 requirement. The vitamin levels were measured by a team led by co-author Michael Rychlik at the Technical University of Munich, Germany.

For protein, the researchers found that the levels in their yeast exceed those of beef, pork, fish, and lentils. Eighty-five grams, or 6 tablespoons, of yeast provides 61% of daily protein needs, while beef, pork, fish, and lentils meet 34%, 25%, 38%, and 38% of the need, respectively. However, the yeast should be treated to rid compounds that can increase the risk of gout if consumed excessively. Even so, treated yeast still meets 41% of the daily protein requirement, comparable to traditional protein sources.

This technology aims to address several global challenges: environmental conservation, food security, and public health. Running on clean energy and CO2, the system reduces carbon emissions in food production. It uncouples land use from farming, freeing up space for conservation. Angenent also stresses that it will not outcompete farmers. Instead, the technology will help concentrate farmers to produce vegetables and crops sustainably. The team’s yeast may also help developing nations overcome food scarcity and nutritional deficiencies by delivering protein and vitamin B9.

New Tech Lets You Taste Digital Food

Summary: Scientists have developed e-Taste, a novel technology that digitally replicates taste in virtual environments. Using chemical sensors and wireless dispensers, the system captures and transmits taste data remotely, enabling users to experience sweet, sour, salty, bitter, and umami flavors.

In tests, participants distinguished different taste intensities with 70% accuracy, and remote tasting was successfully initiated across long distances. Beyond gaming and immersive experiences, this breakthrough could enhance accessibility for individuals with sensory impairments and deepen our understanding of how the brain processes taste.

Next-generation organic nanozymes offer safe, cost-effective solution for agricultural and food industries

Nanozymes are synthetic materials that have enzyme-like catalytic properties, and they are broadly used for biomedical purposes, such as disease diagnostics. However, inorganic nanozymes are generally toxic, expensive, and complicated to produce, making them unsuitable for the agricultural and food industries.

A University of Illinois Urbana-Champaign research team has developed organic-material-based nanozymes that are non-toxic, environmentally friendly, and cost-effective. In two new studies, they introduce next-generation organic nanozymes and explore a point-of-use platform for molecule detection in .

“The first generation of organic-compound-based (OC) nanozymes had some minor drawbacks, so our research group worked to make improvements. The previous OC nanozymes required the use of particle stabilizing polymers having repeatable functional groups, which assured stability of the nanozyme’s nanoscale framework, but didn’t achieve a sufficiently small particle size,” said lead author Dong Hoon Lee, who completed his Ph.D. from the Department of Agricultural and Biological Engineering (ABE), part of the College of Agricultural, Consumer and Environmental Sciences and The Grainger College of Engineering at the U. of I.

Poop-Loop — DESIGN × STORIES

This video shows basically that trash can be turned into treasure. From recycling food waste into dye to so much more. This video shows that basically pollution can be reduced by 95 percent. Also so that all resources from trash can be reincarnated into many new forms leaving no waste and creating a fully circular economy benefiting the environment.


21_21 DESIGN SIGHT in Tokyo’s Roppongi is currently showing a “pooploop” exhibition. Our presenters chat with exhibition directors Satoh Taku and Takemura Shinichi about cycles of waste and excrement around the planet, and explore the potential of environmental design.

First-of-their-kind wearable sensors continuously monitor health through body sounds

This was first predicted by Omni magazine in 1981.


In the world of medicine, the ability to listen to the intricate symphony of sounds within the human body has long been a vital diagnostic tool. Physicians routinely employ stethoscopes to capture the subtle rhythms of air moving in and out of the lungs, the steady beat of the heart, and even the progress of digested food through the gastrointestinal tract.

These sounds hold valuable information about a person’s health, and any deviations from the norm can signal the presence of underlying medical issues. Now, a groundbreaking development from Northwestern University is set to transform the way we monitor these vital sounds.

Researchers at Northwestern University have introduced a revolutionary soft, miniaturized wearable device that transcends the episodic measurements typically obtained during periodic doctor examinations. These innovative devices adhere gently to the skin, enabling continuous, wireless monitoring of crucial body sounds across multiple regions of the body simultaneously. This groundbreaking research was published in the prestigious journal Nature Medicine.

From the tropics to the lab: New yeasts could transform industry

Yeast cells can be used to convert agricultural and forestry residues, as well as industrial byproducts, into valuable bioproducts. New and unexplored yeast strains may have properties that can enhance the commercial competitiveness of this sustainable production. In a study recently published in Applied and Environmental Microbiology, researchers collected and examined the biotechnological potential of 2,000 West African yeast strains.

The study—the first of its kind—is a collaboration between the University of Nigeria, Chalmers University of Technology, and the University of Gothenburg. It is based on a nationwide collection of samples from fruit, bark, soil, and waterways in Nigeria. This approach, known as bioprospecting, involves exploring various plants or microorganisms in nature to identify properties that can be utilized for different industrial or societal applications.

In this study, researchers searched for new yeast species with the potential use in industrial production of biochemicals, pharmaceuticals, and food ingredients.

Green process converts almost any carbon source into graphene

RESEARCHERS at Rice University, US have discovered a green process which can quickly and cheaply produce graphene from almost any carbon source, including coal, mixed plastic waste, biomass, and waste food. It could facilitate a reduction in the environmental impact of concrete and other building materials.

Graphene is the strongest known material. It is comprised of a single layer of carbon atoms arranged in a two-dimensional hexagonal lattice, in which one atom forms each vertex. A tiny amount of graphene can significantly enhance the properties of materials such as plastics, paints, composites, wood composites, concrete, metals, and lubricant. However, it is expensive to manufacture, so has limited industrial applications.

The process discovered at Rice employs flash Joule heating is a process where an electric current is passed through a conductor to produce heat. Using a custom reactor, the Rice researchers can produce graphene in 10 ms. The carbon source is placed between two electrodes and 200 V is applied in a short electrical pulse, heating the material to more than 3,000K (2726.9°C). Non-carbon elements sublime and the remaining carbon atoms reconstruct into carbon.

Scientists Develop Tiny 6-Gram Robot That Swims Through Tight Spaces With Ease

Swimming robots are essential for mapping pollution, studying aquatic ecosystems, and monitoring water quality in sensitive areas such as coral reefs and lake shores. However, many existing models rely on noisy propellers that can disturb or even harm wildlife. Additionally, navigating these environments is challenging due to natural obstacles like plants, animals, and debris.

To address these issues, researchers from the Soft Transducers Lab and the Unsteady Flow Diagnostics Laboratory at EPFL’s School of Engineering, in collaboration with the Max Planck Institute for Intelligent Systems, have developed a compact, highly maneuverable swimming robot. Smaller than a credit card and weighing just six grams, this agile robot can navigate tight spaces and carry payloads significantly heavier than itself. Its design makes it particularly suited for confined environments such as rice fields or for inspecting waterborne machinery. The study has been published in Science Robotics.

“In 2020, our team demonstrated autonomous insect-scale crawling robots, but making untethered ultra-thin robots for aquatic environments is a whole new challenge,” says EPFL Soft Transducers Lab head Herbert Shea. “We had to start from scratch, developing more powerful soft actuators, new undulating locomotion strategies, and compact high-voltage electronics”

Genome Editing with CRISPR: How to Effectively Minimize Off-Target Effects

Unlock the full potential of CRISPR technology while ensuring precision and safety! In this video, we dive deep into the science of CRISPR gene editing, explore the challenges of off-target effects, and reveal cutting-edge strategies to minimize risks.
📌 Key Topics Covered:

1️⃣ What is CRISPR?

Discover the origins of CRISPR-Cas9, its revolutionary impact on genetics, agriculture, and medicine, and the latest advancements like base editing and AI-driven optimization.
2️⃣ Understanding Off-Target Effects.

Learn why unintended DNA modifications occur, how gRNA promiscuity and nuclease activity contribute to risks, and proven mitigation strategies (e.g., HiFi Cas9, dual gRNA systems).
3️⃣ Off-Target Prediction & Detection.

Explore bioinformatics tools (e.g., CRISOT) and advanced detection methods like Whole Genome Sequencing (WGS), LAM-HTGTS, and Digenome-seq for unbiased, high-sensitivity analysis.
4️⃣ Validation & Solutions.

See how CD Genomics’ off-target validation service combines multiplex PCR, Illumina sequencing, and cloud-based analytics to deliver publication-ready results with unmatched accuracy.