From robotics to connectivity, technological transformation offers tremendous possibility for the farming and food sectors.
Category: food – Page 133
Join us on Patreon!
https://www.patreon.com/MichaelLustgartenPhD
Papers referenced in the video:
Life-Span Extension in Mice by Preweaning Food Restriction and by Methionine Restriction in Middle Age.
https://pubmed.ncbi.nlm.nih.gov/19414512/
Low methionine ingestion by rats extends life span.
https://pubmed.ncbi.nlm.nih.gov/8429371/
Fasting glucose level and all-cause or cause-specific mortality in Korean adults: a nationwide cohort study.
https://pubmed.ncbi.nlm.nih.gov/32623847/
Total plasma homocysteine and cardiovascular risk profile. The Hordaland Homocysteine Study.
https://pubmed.ncbi.nlm.nih.gov/7474221/
Predicting Age by Mining Electronic Medical Records with Deep Learning Characterizes Differences between Chronological and Physiological Age.
Learn More.
World Economic Forum.
They’re autonomous, self-cleaning and powered entirely by solar energy.
Our podcast on the science and technology making the news. This week, we speak to Jennifer Doudna, the Nobel laureate who pioneered the revolutionary tool | Podcasts.
Automation will create new types of jobs.
What’s on their curriculum? Organic farming, aquaculture and lots more.
Moreover, this unique idea requires just 10% of water supply as compared to regular hydroponics cultivation. #InnovateIndia
According to a new study, the U-shaped association between diet and size in modern land mammals could also stand for “universal,” as the relationship covers at least 66 million years and a range of vertebrate animal groups.
It’s been several decades since ecologists realized that graphing the diet-size relationship of terrestrial mammals yields a U-shaped curve when aligning those mammals on a plant-to-protein gradient. As illustrated by that curve, the plant-eating herbivores on the far left and meat-eating carnivores on the far right tend to grow much larger than those of the all-consuming omnivores and the invertebrate-feasting invertivores in the middle.
Circa 2019
Domestic cats (Felis catus) and dogs (Canis familiaris) are the most popular companion animals; worldwide, over 600 million cats live with humans1, and in some countries their number equals or exceeds the number of dogs (e.g., Japan: dogs: 8,920,000, cats: 9,526,000)2,3. Cats started to cohabit with humans about 9,500 years ago4; their history of cohabitation with humans is shorter than that of dogs5, and they have been domesticated by natural selection, not by artificial selection6,7,8. Despite these differences in their process of domestication compared to that of dogs, cats too have developed behaviours related to communication with humans; for example, for human listeners, the vocalisations of domestic cats are more comfortable than those of African wild cats (Felis silvestris lybica)9. In addition, purring has different acoustical components during solicitation of foods than at other times, and humans perceive such solicitation purrs as more urgent and unpleasant than non-solicitation purrs10. These facts clearly indicate that domestic cats have developed the ability to communicate with humans and frequently do so; Bradshaw8 suggested that this inter-species communicative ability is descended from intra-species communicative ability.
Researchers have only recently begun to investigate cats’ ability to communicate with humans. Miklósi et al. showed that cats are able to use the human pointing gesture as a cue to find hidden food, similarly to dogs11. The researchers also suggested that cats do not gaze toward humans when they cannot access food, unlike dogs. However, a recent study revealed that cats show social referencing behaviour (gazing at human face) when exposed to a potentially frightening object, and to some extent cats changed their behaviour depending on the facial expression of their owner (positive or negative)12. Cats in food begging situations can also discriminate the attentional states of humans who look at and call to them13. In addition, Galvan and Vonk demonstrated that cats were modestly sensitive to their owner’s emotions14, and other research has indicated that cats’ behaviour is influenced by human mood15,16. Further, cats can discriminate their owner’s voice from a stranger’s17. This research evidence illustrates that domestic cats have the ability to recognize human gestural, facial, and vocal cues.
In contrast to cats, numerous research studies have shown the ability of domestic dogs to communicate with humans. Dogs are skilful at reading human communicative gestures, such as pointing (reviewed in Miklósi & Soproni18). Dogs can differentiate human attentional states19,20,21,22 and distinguish human smiling faces from blank expressions23. They are also capable of using some human emotional expressions to help them find hidden food and fetch objects24,25.