Toggle light / dark theme

Why this Solution to the Fermi Paradox Is Terrifying

Another look at the Fermi Paradox, and the implication on us as a civilization. Get a razor that will last you a lifetime from Henson Shaving here: https://bit.ly/2YS4SPN To get the 100 pk of blades for free, make sure to add it to your shopping cart, and use the code ASTRUM.

Astrum merch now available!
Apparel: https://teespring.com/stores/astrum-space.
Metal Posters: https://displate.com/promo/astrum?art=5f04759ac338b.

SUBSCRIBE for more videos about our other planets.
Subscribe! http://goo.gl/WX4iMN
Facebook! http://goo.gl/uaOlWW
Twitter! http://goo.gl/VCfejs.
Instagram! https://www.instagram.com/astrumspace/
TikTok! https://www.tiktok.com/@astrumspace.

Astrum Spanish: https://bit.ly/2KmkssR
Astrum Portuguese: https://www.youtube.com/channel/UChn_-OwvV63mr1yeUGvH-BQ

Donate!
Patreon: http://goo.gl/GGA5xT
Ethereum Wallet: 0x5F8cf793962ae8Df4Cba017E7A6159a104744038

Become a Patron today and support my channel! Donate link above. I can’t do it without you. Thanks to those who have supported so far!

History of the Universe from a Neural Network

Vitaly Vanchurin, physicist and cosmologist at the University of Minnesota Duluth speaks to Luis Razo Bravo of EISM about the world as a neural network, machine learning, theories of everything, interpretations of quantum mechanics and long-term human survival.

Timestamp of the conversation:

00:00 — Opening quote by Vanchurin.
00:53 — Introduction to Vanchurin.
03:17 — Vanchurin’s thoughts about human extinction.
05:56 — Brief background on Vanchurin’s research interests.
10:24 — How Vanchurin became interested in neural networks.
12:31 — How quantum mechanics can be used to understand neural networks.
18:56 — How and where does gravity fit into Vanchurin’s model?
20:39 — Does Vanchurin incorporate holography (AdS/CFT) into hid model?
24:14 — Maybe the entirety of physics is an “emergent” neural network.
28:08 — Maybe there are forms of life that are more fit to survive than humans.
28:58 — Maldacena’s “principle of Maximal life“
29:28 — Theories of Everything.
31:06 — Why Vanchurin’s framework is potentially a true TOE (politics, ethics, etc.)
34:07 — Why physicists don’t like to talk to philosophers and ask big questions.
36:45 — Why the growing number of theories of everything?
39:11 — Apart from his own, does Vanchurin have a favorite TOE?
41:26 — Bohmian mechanics and Aharanov’s Two-time approach to quantum mechanics.
43:53 — How has Vanchurin’s recent paper been received? Beliefs about peer review.
46:03 — Connecting Vanchurin’s work to machine learning and recommendations.
49:21 — Leonard Susskind, quantum information theory, and complexity.
51:23 — Maybe various proposals are looking at the same thing from different angles.
52:17 — How to follow Vanchurin’s work and connect to him.

Vanchurin’s paper on the world as a NN: https://arxiv.org/abs/2008.01540
Vanchurin on a theory of machine learning: https://arxiv.org/abs/2004.

Vanchurin’s website and research interests: https://www.d.umn.edu/cosmology/

Learn more about EISM at www.eism.eu.

Russia says its ‘doomsday plane’ can now communicate with its deep sea nuclear submarines

The test strengthens Russia’s nuclear command and control systems amid rising tensions with the West.

Russian defense officials are claiming a successful test of the Ilyushin Il-80 deep-sea communication system, allowing the Russian ‘Doomsday’ plane to communicate with deep-sea nuclear submarines in the event of a nuclear war.

According to the Russian state-owned news agency RIA Novosti, the Il-80 ‘Flying Kremlin’ successfully communicated with Russian nuclear submarines located deep underwater using ultra-long wave signals, enabling the Russian President to communicate and coordinate Russian military activity in the event of nuclear conflict.

Russia, U.S. to hold first talks under nuclear treaty since Ukraine war —State Dept

WASHINGTON, Nov 8 (Reuters) — The United States and Russia are expected to meet soon and discuss resuming inspections under the New START nuclear arms reduction treaty that have been paused since before Russia’s invasion of Ukraine, U.S. State Department spokesperson Ned Price said on Tuesday.

Speaking at a daily press briefing, Price said the bilateral consultative commission (BCC), the mechanism for implementation of the last remaining arms control agreement between the world’s two largest nuclear powers, will meet “in the near future.”

Russia in August suspended cooperation with inspections under the treaty, blaming travel restrictions imposed by Washington and its allies over Moscow’s February invasion of Ukraine, but said it was still committed to complying with the provisions of the treaty.

Even a small nuclear war could cause global famine — here’s what the data shows

Nuclear arsenals remain large enough to fundamentally shift the Earth system in the blink of an eye.

The U.S. and Russia have recently agreed to hold talks on the New START Treaty, and the only accord left regulating the two largest nuclear arsenals in the world. While this is undoubtedly good news, we must not allow it to lull us into complacency. Global events this year, most notably in Ukraine, have raised fears of a nuclear conflict to levels not seen since the cold war. More than 10,000 nuclear warheads remain in the world, and the Kremlin’s language regarding weapons of mass destruction has become increasingly threatening in 2022.


Global famine and climate breakdown

In 1982, a group of scientists, including Carl Sagan, began to raise the alarm about a climate apocalypse that could follow a nuclear war. Using simple computer simulations and historic volcanic eruptions as natural analogs, they showed how smoke that lofted into the stratosphere from urban firestorms could block the sun for years.

They found that this “nuclear winter,” as it came to be called, could trigger catastrophic famine far from the location of the war. Ronald Reagan and Mikhail Gorbachev, leaders of the United States and Soviet Union in the 1980s, both cited this work when they declared that a nuclear war could not be won.

Ancient global ocean on Mars may have come from carbon-rich chondrite meteorites from the outer solar system

A team of researchers at the University of Copenhagen’s Center for Star and Planet Formation, working with colleagues from Université de Paris, ETH Zürich and the University of Bern, has found evidence suggesting that most of the water that made up an ancient global ocean on Mars came from carbon-rich chondrite meteorites from the outer solar system. The study is published in Science Advances.

Prior research has suggested that at one time, Mars was either mostly or entirely covered by a watery , and that the water came from gases seeping from below the surface and liquifying as they cooled. In this new effort, the researchers suggest the water more likely came from another source—meteorites traveling from the outer solar system.

The researchers came to this conclusion after studying fragments flung from the surface of Mars after asteroid strikes, which made their way to Earth as meteorites. The researchers studied 31 of them, looking most specifically for chromium isotopic fingerprints. Chromium-54 does not occur naturally on Mars; thus, its presence in crust samples from Mars would indicate that the surface had been struck by material from somewhere else.

Is Physical Law an Alien Intelligence?

Perhaps Arthur C. Clarke was being uncharacteristically unambitious. He once pointed out that any sufficiently advanced technology is going to be indistinguishable from magic. If you dropped in on a bunch of Paleolithic farmers with your iPhone and a pair of sneakers, you’d undoubtedly seem pretty magical. But the contrast is only middling: The farmers would still recognize you as basically like them, and before long they’d be taking selfies. But what if life has moved so far on that it doesn’t just appear magical, but appears like physics?

After all, if the cosmos holds other life, and if some of that life has evolved beyond our own waypoints of complexity and technology, we should be considering some very extreme possibilities. Today’s futurists and believers in a machine “singularity” predict that life and its technological baggage might end up so beyond our ken that we wouldn’t even realize we were staring at it. That’s quite a claim, yet it would neatly explain why we have yet to see advanced intelligence in the cosmos around us, despite the sheer number of planets it could have arisen on—the so-called Fermi Paradox.

For example, if machines continue to grow exponentially in speed and sophistication, they will one day be able to decode the staggering complexity of the living world, from its atoms and molecules all the way up to entire planetary biomes. Presumably life doesn’t have to be made of atoms and molecules, but could be assembled from any set of building blocks with the requisite complexity. If so, a civilization could then transcribe itself and its entire physical realm into new forms. Indeed, perhaps our universe is one of the new forms into which some other civilization transcribed its world.

Fermi Paradox: Stay At Home Civilizations

Today we return to the Fermi Paradox to contemplate the notion of civilizations which neither expand outwards to colonize the galaxy nor go extinct, but exist as long-term, high-tech civilizations just on their own planet or solar system. To discuss the possible motives and reasoning we will look at the many arguments raised for and against space exploration.

Visit our Website: http://www.isaacarthur.net.
Join the Facebook Group: https://www.facebook.com/groups/1583992725237264/
Support the Channel on Patreon: https://www.patreon.com/IsaacArthur.
Visit the sub-reddit: https://www.reddit.com/r/IsaacArthur/
Listen or Download the audio of this episode from Soundcloud: https://soundcloud.com/isaac-arthur-148927746/fermi-paradox-…ilizations.
Cover Art by Jakub Grygier: https://www.artstation.com/artist/jakub_grygier

Mars shows how even the simplest life forms can destroy their own planet

Microbial life may have resided within the first four kilometers of Mars’s porous crust.

Four billion years ago, the solar system was still young. Almost fully formed, its planets were starting to experience asteroid strikes a little less frequently. Our own planet could have become habitable as long as 3.9 billion years ago, but its primitive biosphere was much different than it is today. Life had not yet invented photosynthesis, which some 500 million years later would become its main source of energy. The primordial microbes — the common ancestors to all current life forms on Earth — in our planet’s oceans, therefore, had to survive on another source of energy.


Some of the oldest life forms in our biosphere were microorganisms known as “hydrogenotrophic methanogens” that particularly benefited from the atmospheric composition of the time. Feeding on the CO2 (carbon dioxide) and H2 (dihydrogen) that abounded in the atmosphere (with H2 representing between 0.01 and 0.1% of the atmospheric composition, compared to the current approximate of 0.00005%), they harnessed enough energy to colonize the surface of our planet’s oceans.

In return, they released into the atmosphere large amounts of CH4 (a.k.a., methane, from which they get their name), a potent greenhouse gas that accumulated and heated up the climate. Since our sun at the time was not as bright as it is today, it may not have been able to maintain temperate conditions on the planet’s surface without the intervention of other aspects. As such, thanks to these methanogens, the very emergence of life on Earth may itself have helped ensure our planet’s habitability, setting the right conditions for the evolution and complexification of the terrestrial biosphere for the billions of years that followed.

While this is the likeliest explanation for the early development of habitability on Earth, what was it like for the other planets of the solar system, such as our neighbor, the red planet? As we continue to explore Mars, it is becoming ever clearer that similar environmental conditions were developing on its surface at the same time as those that enabled methanogens to flourish in the oceans back on Earth.

/* */