Dr Michael Russel’s lecture at the Molecular Frontiers Symposium at the Royal Swedish Academy of Sciences in Stockholm, Sweden, May 2011. The topic of the symposium was “Origin of Life and Molecular Evolution”. Check our YouTube channel for more exciting science videos! For more information, visit www.molecularfrontiers.org.
Mathematicians delight in the beauty of math that so many of us don’t see. But nature is a wonderful realm in which to observe beauty born out of mathematical relationships.
The natural world provides seemingly endless patterns underpinned by numbers – if we can recognize them.
Luckily for us, a motley team of researchers has just uncovered another striking connection between math and nature; between one of the purest forms of mathematics, number theory, and the mechanisms governing the evolution of life on molecular scales, genetics.
An international team of scientists has found a crucial link between the chemistry of Earth’s deep mantle and its early atmosphere. The study uncovers new insights into the evolution of life on our planet and the surge of atmospheric oxygen.
The scientists focused their investigation on magmas formed in ancient subduction zones, areas where portions of Earth’s crust sink back into the mantle.
The experts examined a critical juncture in Earth’s history known as the Great Oxidation Event (GOE), which occurred between 2.1 and 2.4 billion years ago.
Plenary Talk by Michael Levin on “Non-neural, developmental bioelectricity as a precursor for cognition: Evolution, synthetic organisms, and biomedicine” at the Virtual Miniature Brain Machinery Retreat, September 16, 2021. Introduction by William Baker.
Michael Levin. Director of the Allen Discovery Center. Tufts University.
Sponsored by the National Science Foundation, the University of Illinois at Urbana-Champaign, and the Beckman Institute for Advanced Science & Technology. This video was supported by the National Science Foundation under grant 1735252.
Michael Levin talk for the Mind, Technology, and Society (MTS) talk series at UC Merced on January 23, 2023. Abstract: Each of us makes the remarkable journey from the physics and chemistry of a quiescentunfertilized egg to that of a complex human being. How can we understand the continuousprocesses that scale up minds from the tiny physiological competencies of single cells to the large-scale metacognitive capacities of large brains? Here, I will describe a framework known as TAME-Technological Approach to Mind Everywhere — which enables identifying, understanding, andrelating to unconventional cognitive agents. I will use the example of the collective intelligence ofcells during morphogenesis to illustrate how we can begin to widen the lessons of multiscale neuroscience well beyond neurons. This will be essential as we head into a future that will bepopulated by a wide range of evolved, designed, and hybrid beings with novel bodies and novelminds. I will conclude with a case study of our new synthetic biorobot (Xenobots) and a discussionof the implications of these ideas for evolution, biomedicine, and ethics.
Scientists have recently reviewed the available literature to examine the critical roles played by mitochondria in maintaining homeostasis. The review summarized the involvement of mitochondria in age-related disease progression and highlighted its potential as a therapeutic target of these diseases. This review has been published inExperimental & Molecular Medicine.
Mitochondria is a cytoplasmic organelle in most eukaryotic cells and is enclosed by two phospholipid membranes: the inner mitochondrial membrane (IMM) and outer mitochondrial membrane (OMM). These membranes separate functionally compartmentalized structures, i.e., matrix and intermembrane space. Mitochondria contain a unique genetic code, mitochondrial DNA (mtDNA).
During evolution, most mitochondrial genes were lost or translocated to nuclei. However, genes that remained in mtDNA encode for essential translational apparatus, i.e., ribosomal RNAs and transfer RNAs. In addition, these genes also encode proteins that are key components of oxidative phosphorylation system (OXPHOS) complexes embedded in the IMM.
Michael Levin, a developmental biologist at Tufts University, challenges conventional notions of intelligence, arguing that it is inherently collective rather than individual.
Levin explains that we are collections of cells, with each cell possessing competencies developed from their evolution from unicellular organisms. This forms a multi-scale competency architecture, where each level, from cells to tissues to organs, is solving problems within their unique spaces.
How would it feel to control objects with your mind? Or hear colors? Or maybe even live forever? Well, if you want to find out, all you have to do is become a cyborg. How would being part machine affect us? Would it cause a greater divide between the rich and the poor? And is this the next step in human evolution?
What happened before the Big Bang? In two of our previous films we examined cyclic cosmologies and time travel universe models. Specially, the Gott and Li Model https://www.youtube.com/watch?v=79LciHWV4Qs) and Penrose’s Conformal Cyclic Cosmology https://www.youtube.com/watch?v=FVDJJVoTx7s). Recently Beth Gould and Niayesh Afshordi of the Perimeter Institute for Theoretical Physics have fused these two models together to create a startling new vision of the universe. In this film they explain their new proposal, known as Periodic Time Cosmology.
0:00 Introduction. 0:45 NIayesh’s story. 1:15 Beth’s story. 2:25 relativity. 3:26 Gott & Li model. 6:23 origins of the PTC model. 8:17 PTC periodic time cosmology. 10:55 Penrose cyclic model. 13:01 Sir Roger Penrose. 14:19 CCC and PTC 15:45 conformal rescaling and the CMB 17:28 assumptions. 18:41 why a time loop? 20:11 empirical test. 23:96 predcitions. 26:19 inflation vs PTC 30:22 gravitational waves. 31:40 cycles and the 2nd law. 32:54 paradoxes. 34:08 causality. 35:17 immortality in a cyclic universe. 38:02 eternal return. 39:21 quantum gravity. 39:57 conclusion.
Elizabeth Gould has asked to make this clarification in the written text ” “Despite the availability of infinite time in the periodic time model, this doesn’t lead to thermalization in a typical time-evolution scenario, and therefore doesn’t, strictly speaking, solve the problem related to thermalization in the power spectrum. The reason for this is that, unlike bounce models with a net expansion each cycle, our model has an effective contraction during the conformal phases. Periodic time, therefore, has a unique character in which it reuses the power spectrum from the previous cycles, which is confined to a given form due to the constraints of the system, rather than removing the old power spectrum and needing to produce a new one.”