Menu

Blog

Archive for the ‘evolution’ category: Page 52

Jan 31, 2023

Dr. Eric Bapteste, Ph.D. — CNRS/AIRE — Interactomics For Deeper Understanding Of Aging And Evolution

Posted by in categories: biological, cosmology, evolution

(http://www.evol-net.fr/index.php?option=com_tlpteam&view=team&id=2&Itemid=559) is a Research Director at the French National Centre for Scientific Research (CNRS), the French state research organization and the largest fundamental science agency in Europe.

Dr. Bapteste has both a Ph.D. in evolutionary biology from Pierre and Marie Curie University and a Ph.D. in the philosophy of biology from Pantheon-Sorbonne University.

Continue reading “Dr. Eric Bapteste, Ph.D. — CNRS/AIRE — Interactomics For Deeper Understanding Of Aging And Evolution” »

Jan 30, 2023

Cooperative hydrodynamics accompany multicellular-like colonial organization in the unicellular ciliate Stentor

Posted by in category: evolution

Evolution of multicellularity from early unicellular ancestors is arguably one of the most important transitions since the origin of life1,2. Multicellularity is often associated with higher nutrient uptake3, better defense against predation, cell specialization and better division of labor4. While many single-celled organisms exhibit both solitary and colonial existence3,5,6, the organizing principles governing the transition and the benefits endowed are less clear. Using the suspension-feeding unicellular protist Stentor coeruleus, we show that hydrodynamic coupling between proximal neighbors results in faster feeding flows that depend on the separation between individuals. Moreover, we find that the accrued benefits in feeding current enhancement are typically asymmetric– individuals with slower solitary currents gain more from partnering than those with faster currents. We find that colony-formation is ephemeral in Stentor and individuals in colonies are highly dynamic unlike other colony-forming organisms like Volvox carteri 3. Our results demonstrate benefits endowed by the colonial organization in a simple unicellular organism and can potentially provide fundamental insights into the selective forces favoring early evolution of multicellular organization.

Suspension-feeding unicellular protists inhabit a fluid world dominated by viscous forces that limit prey transport for feeding 3,7,8. Using either flagella or cilia, many of these organisms generate microcurrents that actively transport dissolved nutrients and smaller prey critical for their nutrition 3,9,10. A protist’s ability to favorably alter its feeding current so as to enhance feeding rate would therefore be beneficial to its survival. Can colony formation enable unicellular protists to enhance their feeding flows? Colonial protists have been suggested to generate stronger flows by combining individual feeding microcurrents of neighboring colony members. Colony forming protists can broadly be classified into two categories depending on presence (or absence) of physical linkages between colony members.

Jan 28, 2023

Astronomers inspect a powerful radio-loud high-redshift quasar

Posted by in categories: cosmology, evolution

Using the European VLBI Network (EVN), an international team of astronomers has performed high-resolution imaging observations of a powerful and radio-loud high-redshift quasar known as J2102+6015. Results of the observational campaign, presented January 18 on the preprint server arXiv, could help us better understand the nature of this peculiar quasar and other powerful radio sources.

Quasars, or quasi-stellar objects (QSOs), are extremely luminous active galactic nuclei (AGN) containing supermassive central black holes with accretion disks. Their redshifts are measured from the strong spectral lines that dominate their visible and .

Astronomers are especially interested in finding new (at redshift higher than 4.5) as they are the most luminous and most distant compact objects in the observable universe. Spectra of such QSOs can be used to estimate the mass of supermassive black holes that constrain the evolution and formation models of quasars. Therefore, high-redshift quasars could serve as a powerful tool to probe the .

Jan 28, 2023

Beyond Human: A Billion Years of Evolution and the Fate of Our Species

Posted by in categories: evolution, media & arts, space

Our lifespans might feel like a long time by human standards, but to the Earth it’s the blink of an eye. Even the entirety of human history represents a tiny slither of the vast chronology for our planet. We often think about geological time when looking back into the past, but today we look ahead. What might happen on our planet in the next billion years?

Written and presented by Prof David Kipping, edited by Jorge Casas.

Continue reading “Beyond Human: A Billion Years of Evolution and the Fate of Our Species” »

Jan 26, 2023

Can humans still grow fur? New study discovers the genes

Posted by in categories: evolution, genetics

An examination of 19,149 mammalian genes sheds new light on the future of hair loss.

Due to evolution, we got rid of most of the hair on our bodies. Although we are mammals, it is obvious that we are less hairy than the majority of them. So, could this mean we are on our way to becoming more hairless? Or is there a way to turn hair development back on?

This is where a new study comes in. As stated by the University of Utah, a groundbreaking comparison of genetic codes from 62 animals is beginning to tell the story of how humans—and other mammals—came to be, naked. The study was published in the journal eLife.

Continue reading “Can humans still grow fur? New study discovers the genes” »

Jan 26, 2023

Let’s Explode the Universe (with Forrest Valkai and Gutsick Gibbon)

Posted by in categories: evolution, space

What happens when two dynamic (and wildly entertaining) science educators come together to talk about evolution VS. creationism? This podcast answers the question. With Forrest Valkai and Erika / Gutsick Gibbon.

Jan 25, 2023

Cancer’s Secret Weapon? Enzyme That Protects Against Viruses May Fuel Tumor Evolution

Posted by in categories: biotech/medical, evolution, genetics

An enzyme that defends human cells against viruses can help drive cancer evolution towards greater malignancy by causing myriad mutations in cancer cells, according to a study led by investigators at Weill Cornell Medicine. The finding suggests that the enzyme may be a potential target for future cancer treatments.

In the new study, published recently in the journal Cancer Research, scientists used a preclinical model of bladder cancer to investigate the role of the enzyme called APOBEC3G in promoting the disease and found that it significantly increased the number of mutations in tumor cells, boosting the genetic diversity of bladder tumors and hastening mortality.

“Our findings suggest that APOBEC3G is a big contributor to bladder cancer evolution and should be considered as a target for future treatment strategies,” said study senior author Dr. Bishoy M. Faltas, assistant professor of medicine in the Division of Hematology and Medical Oncology and of cell and developmental biology at Weill Cornell Medicine, and an oncologist who specializes in urothelial cancers at NewYork-Presbyterian/Weill Cornell Medical Center.

Jan 24, 2023

The Record for the Farthest Galaxy just got Broken Again, now just 250 million years after the Big Bang

Posted by in categories: cosmology, evolution

In a recent study that was sent to MNRAS, a group of researchers worked together to use the first batch of data from the James Webb Space Telescope (JWST) to find a candidate galaxy, CEERS-93316, that formed about 250 million years after the Big Bang and set a new record for redshift with a value of z = 16.7. This discovery is very exciting because it shows how good JWST is, even though it has only just started sending back its first set of data. The Cosmic Evolution Early Release Science Survey, or CEERS, was made so that it could be used with JWST to take pictures.

“The past few weeks have been surreal, watching all the records that stood for a long time with Hubble be broken by JWST,” says Dr. Rebecca Bowler, who is an Ernest Rutherford Fellow at the University of Manchester, and a co-author on the study. “Finding a z = 16.7 galaxy candidate is an amazing feeling – it wasn’t something we were expecting from the early data.”

This new study talks about a dozen previous studies that measured objects up to redshifts z 10 using a mix of ground-based observations and the Hubble Space Telescope and Spitzer Space Telescope.

Jan 24, 2023

Nonlinear two-level dynamics of quantum time crystals Communications

Posted by in categories: evolution, quantum physics

Year 2022 face_with_colon_three


Recent work has reported a realization of a time crystal in the form of the Bose-Einstein condensate of magnons in superfluid 3He. Here, the authors study the dynamics of a pair of such quantum time crystals and show that it closely resembles the evolution of a two-level system, modified by nonlinear feedback.

Jan 23, 2023

New Research Could Link Evolution of Complex Life to Genetic “Dark Matter”

Posted by in categories: biological, chemistry, cosmology, evolution, genetics, neuroscience, physics

Octopuses have fascinated scientists and the public with their remarkable intelligence, from using tools to engaging in creative play, problem-solving, and even escaping from aquariums. Now, their cognitive abilities may provide significant insight into understanding the evolution of complex life and cognition, including the human brain.

An international team of researchers from Dartmouth College and the Max Delbrück Center (MDC) in Germany has published a study in the journal Science Advances.

<em>Science Advances</em> is a peer-reviewed, open-access scientific journal that is published by the American Association for the Advancement of Science (AAAS). It was launched in 2015 and covers a wide range of topics in the natural sciences, including biology, chemistry, earth and environmental sciences, materials science, and physics.

Page 52 of 143First4950515253545556Last