Toggle light / dark theme

We explore some of the ramifications arising from superflares on the evolutionary history of Earth, other planets in the solar system, and exoplanets. We propose that the most powerful superflares can serve as plausible drivers of extinction events, and that their periodicity corresponds to certain patterns in the terrestrial fossil diversity record. On the other hand, weaker superflares may play a positive role in enabling the origin of life through the formation of key organic compounds. Superflares could also prove to be quite detrimental to the evolution of complex life on present-day Mars and exoplanets in the habitable zone of M- and K-dwarfs. We conclude that the risk posed by superflares has not been sufficiently appreciated, and that humanity might potentially witness a superflare event in the next $\sim {10}^{3}$ years, leading to devastating economic and technological losses. In light of the many uncertainties and assumptions associated with our analysis, we recommend that these results should be viewed with due caution.

Read more

Cuprate superconductors have many unusual properties even in the “normal” (nonsuperconducting) regions of their phase diagram. In the so-called “strange metal” phase, these materials have resistivity that scales linearly with temperature, in contrast to the usual quadratic dependence of ordinary metals. Giraldo-Gallo et al. now find that at very high magnetic fields—up to 80 tesla—the resistivity of the thin films of a lanthanum-based cuprate scales linearly with magnetic field as well, again in contrast to the expected quadratic law. This dual linear dependence presents a challenge for theories of the normal state of the cuprates.

Science, this issue p. 479

The anomalous metallic state in the high-temperature superconducting cuprates is masked by superconductivity near a quantum critical point. Applying high magnetic fields to suppress superconductivity has enabled detailed studies of the normal state, yet the direct effect of strong magnetic fields on the metallic state is poorly understood. We report the high-field magnetoresistance of thin-film La2–xSrxCuO4 cuprate in the vicinity of the critical doping, 0.161 ≤ p ≤ 0.190. We find that the metallic state exposed by suppressing superconductivity is characterized by magnetoresistance that is linear in magnetic fields up to 80 tesla. The magnitude of the linear-in-field resistivity mirrors the magnitude and doping evolution of the well-known linear-in-temperature resistivity that has been associated with quantum criticality in high-temperature superconductors.

Read more

“The Future: A Very Short Introduction” (OUP, 2017) by Dr. Jennifer M Gidley.


Oxford University Press has just released a wonderful little animation video centring on my book “The Future: A Very Short Introduction” published in 2017. In an entertaining way it shows how the concept of the future or futures is central to so many other concepts — many of which are the subject of other OUP Very Short Introductions. The VSI Series now has well over 500 titles, with ‘The Future’ being number 516.

To watch the video click here.

You can read a full sample chapter of the Introduction. The abstracts can be read for all of the other chapters at the links below.

Contents

List of Illustrations

Introduction

1 Three Thousand Years of Futures

2 The Future Multiplied

3 The Evolving Scholarship of Futures Studies

4 Crystal Balls, Flying Cars and Robots

5 Technotopian or Human-Centred Futures?

6 Grand Global Futures Challenges

Conclusion

References

Further Reading & Websites

Appendix: Global Futures Timeline

Index

The book is available to purchase at OUP.

‘The Future’ has been very well received globally and an Arabic translation has recently been released by the Bahrain Authority for Culture and Antiquity.

The Arabic translation of ‘The Future’ will be available in all book fairs in the Arab region and the distributor covers the important libraries in all Arab countries and Saqi books/UK and Jarir book store/USA . It can also be purchased through the following:

www.neelwafurat.com

www.jamalon.com

www.alfurat.com

A Chinese translation has been licensed and is underway, and discussions are in process for translations into German, Turkish, Italian and French.

You may recognize the anglerfish from its dramatic appearance in the hit animated film Finding Nemo, as it was very nearly the demise of clownfish Marlin and blue-tang fish Dory. It lives most of its life in total darkness more than 1,000 meters below the ocean surface. Female anglerfish sport a glowing lure on top of their foreheads, basically a pole with a light bulb on its end, where bioluminescent bacteria live. The light-emitting lure attracts both prey and potential mates to the fish.

Despite its recent fame, little is known about anglerfish and their symbiotic relationship with these brilliant , because the fish are difficult to acquire and study.

For the first time, scientists have sequenced and analyzed the genomes of bacteria that live in anglerfish bulbs. The bacteria were taken from fish specimens collected in the Gulf of Mexico.

Read more

Researchers isolated several mutations leading to melanoma and reproduced them in the lab using CRISPR.


Two papers authored by researchers at the University of California, San Francisco described the genetic changes that turn harmless moles into malignant melanomas and the experiment they devised to recreate the step-by-step evolution of normal skin cells into cancer cells [1], [2].

Summary ([1])

We elucidated genomic and transcriptomic changes that accompany the evolution of melanoma from pre-malignant lesions by sequencing DNA and RNA from primary melanomas and their adjacent precursors, as well as matched primary tumors and regional metastases. In total, we analyzed 230 histopathologically distinct areas of melanocytic neoplasia from 82 patients. Somatic alterations sequentially induced mitogen-activated protein kinase (MAPK) pathway activation, upregulation of telomerase, modulation of the chromatin landscape, G1/S checkpoint override, ramp-up of MAPK signaling, disruption of the p53 pathway, and activation of the PI3K pathway; no mutations were specifically associated with metastatic progression, as these pathways were perturbed during the evolution of primary melanomas. UV radiation-induced point mutations steadily increased until melanoma invasion, at which point copy-number alterations also became prevalent.

To understand our future evolution we need to look to our past.

Will our descendants be cyborgs with hi-tech machine implants, regrowable limbs and cameras for eyes like something out of a science fiction novel?

Might humans morph into a hybrid species of biological and artificial beings? Or could we become smaller or taller, thinner or fatter, or even with different facial features and skin colour?

Read more

You might assume that evolution gave Charles Darwin enough to ponder during his five year voyage on The Beagle.

But of all the phenomena the naturalist encountered circumnavigating the globe, it was the flight of spiders which continued to puzzle him.

Darwin noticed that hundreds of spiders would inexplicably land on the Beagle even on a calm day without any wind to blow them on board.

Read more

Bizarre fossils from China are revealing our species’ Asian origins and rewriting the story of human evolution.

By Kate Douglas

DECEMBER 1941. Japan has just entered the second world war. China, already fighting its neighbour, is in the firing line. At the Peking Union Medical College Hospital, Hu Chengzhi carefully packs two wooden crates with the world’s most precious anthropological artefacts. Peking Man – in reality some 200 fossilised teeth and bones, including six skulls – is to be shipped to the US for safekeeping. This is the last anyone ever sees of him.

Read more

For the first time, astronomers have directly observed the magnetism in one of astronomy’s most studied objects: the remains of Supernova 1987A (SN 1987A), a dying star that appeared in our skies over thirty years ago.

In addition to being an impressive observational achievement, the detection provides insight into the early stages of the evolution of supernova remnants and the cosmic magnetism within them.

“The magnetism we’ve detected is around 50,000 times weaker than a fridge magnet,” says Prof. Bryan Gaensler. “And we’ve been able to measure this from a distance of around 1.6 million trillion kilometres.”

Read more

Today we will be taking a look at some of the stories people tell themselves to help them pretend aging is not a problem.


If you ask most people what they think about aging, they will shrug their shoulders and say that it is a natural process. With complete tranquility on their faces, they will agree that, yes, in old age, we are haunted by many diseases, but nothing can be done about it, so it makes no sense to worry about it while you are young and healthy. Just live your life.

Then, the conversation will turn towards an even stranger direction: they will start looking for something good about aging – for example, that it ensures a change of generations, prevents society from becoming stuck in obsolete ideas, and, in general, is the engine of evolution. They’ll explain that the notion of death gives meaning to life and makes us accomplish as much as possible in the little time we have.

Here’s the intriguing part. If you ask the same people what they felt when they first encountered the concept of aging and death from old age, they remember that they were frightened. They were not happy with the answers to “Mom, are you gonna get old and die?” and “Will I die too?” Many people remember that they cried bitterly after this conversation and were filled with sorrow for several days.