Toggle light / dark theme

The World First Hybrid Bio 3D Printer to be revealed at Digical Show

South Korean-based company Rokit is a 3D printing manufacturer we’ve talked about on several occasions before. In February this year, they released Edison Invivo, a tissue engineering and bio-medical research 3D printer that uses a bio ink to produce cell structures in the form of organic tissue.

Now, as a constant innovator, Rokit is back with their latest and also the world first Multi-Use Hybrid Bio 3D printer — Rokit Invivo. What’s exciting is that this awesome bioprinter will be revealed very soon on 30th, September in the Digical Show held by London-based iMakr.

Read more

Lighting the way to miniature devices

Electromagnetic waves created on a layer of organic molecules could provide the perfect on-chip light source for future quantum communication systems.

A team of scientists including researchers at Agency for Science, Technology and Research (A*STAR), Singapore, has captured tiny flashes of light from an ultrathin layer of organic molecules sandwiched between two electrodes that could replace lasers and LEDs as signal sources for future miniature, ultrafast quantum computing and light-based communication systems.

To investigate electromagnetic waves called plasmons, which skim along the interface between two materials, Nikodem Tomczak from the A*STAR Institute of Materials Research and Engineering and colleagues collaborated with Christian A. Nijhuis from the National University of Singapore to construct a junction consisting of a layer of thiol molecules on a metal electrode and liquid gallium-indium alloy as a top electrode.

Read more

Google, Singularity University futurist Ray Kurzweil on the amazing future he sees — thanks to technology

Ray Kurzweil is a futurist, a director of engineering at Google and a co-founder of the Singularity University think tank at NASA Ames Research Center in Mountain View. He is a nonfiction author and creator of several inventions.

Kurzweil met with the Silicon Valley Business Journal to discuss how technology’s exponential progress is rapidly reshaping our future through seismic shifts in information technology and computing power, energy, nanotechnology, robotics, health and longevity.

Read more

MIT News: Hacking microbes

Micro-manufacturing is perfecting quality control.


Biology is the world’s greatest manufacturing platform, according to MIT spinout Ginkgo Bioworks.

The synthetic-biology startup is re-engineering yeast to act as tiny organic “factories” that produce chemicals for the flavor, fragrance, and food industries, with aims of making products more quickly, cheaply, and efficiently than traditional methods.

“We see biology as a transformative technology,” says Ginkgo co-founder Reshma Shetty PhD ’08, who co-invented the technology at MIT. “It is the most powerful and sophisticated manufacturing platform on the planet, able to self-assemble incredible structures at a scale that is far out of reach of the most cutting-edge human technology.”

Read more

Stable nuclear expression of ATP8 and ATP6 genes rescues a mtDNA Complex V null mutant

The SENS Research Foundation has finally published this anticipated and important paper on mitochondrial gene transfer which has ramifications for mitochondrial diseases and more importantly one of the processes of aging. It is great to see that finally after a decade of criticism Aubrey de Grey has proven his approach is viable.


We explore the possibility of re-engineering mitochondrial genes and expressing them from the nucleus as an approach to rescue defects arising from mitochondrial DNA mutations. We have used a patient cybrid cell line with a single point mutation in the overlap region of the ATP8 and ATP6 genes of the human mitochondrial genome. These cells are null for the ATP8 protein, have significantly lowered ATP6 protein levels and no Complex V function. Nuclear expression of only the ATP8 gene with the ATP5G1 mitochondrial targeting sequence appended restored viability on Krebs cycle substrates and ATP synthesis capabilities but, failed to restore ATP hydrolysis and was insensitive to various inhibitors of oxidative phosphorylation. Co-expressing both ATP8 and ATP6 genes under similar conditions resulted in stable protein expression leading to successful integration into Complex V of the oxidative phosphorylation machinery. Tests for ATP hydrolysis / synthesis, oxygen consumption, glycolytic metabolism and viability all indicate a significant functional rescue of the mutant phenotype (including re-assembly of Complex V) following stable co-expression of ATP8 and ATP6. Thus, we report the stable allotopic expression, import and function of two mitochondria encoded genes, ATP8 and ATP6, resulting in simultaneous rescue of the loss of both mitochondrial proteins.

Read more

New solar cell is more efficient, costs less than its counterparts

35 percent efficiency.


The cost of solar power is beginning to reach price parity with cheaper fossil fuel-based electricity in many parts of the world, yet the clean energy source still accounts for slightly more than 1% of the world’s electricity mix.

To boost global solar power generation, researchers must overcome some of the technological limitations that are preventing solar power from scaling up even further, which includes the inability to develop very high-efficiency solar cells – solar cells capable of converting a significant amount of sunlight into usable electrical energy – at very low costs.

A team of researchers from the Masdar Institute and the Massachusetts Institute of Technology (MIT) may have found a way around the seemingly inseparable high-efficiency and high-cost linkage through an innovative multi-junction solar cell that leverages a unique “step-cell” design approach and low cost silicon. The new step-cell combines two different layers of sunlight-absorbing material to harvest a broader range of the sun’s energy while using a novel, low-cost manufacturing process.

The team’s step-cell concept can reach theoretical efficiencies above 40% and estimated practical efficiencies of 35%, prompting the team’s principal investigators – Masdar Institute’s Dr. Ammar Nayfeh, Associate Professor of Electrical Engineering and Computer Science, and MIT’s Dr. Eugene Fitzgerald, the Merton C. Flemings — SMA Professor of Materials Science and Engineering – to plan a start-up company to commercialize the promising solar cell.

Read more

New Plans Show Autonomous Submarine Designed To Explore The Oceans Of Jupiter’s Moon

It’s often said that we know more about the Moon than our own oceans. But what about the oceans of other moons?

Robotic-engineering company German Research Center for Artificial Intelligence (DFKI) has been working on the EurEx (Europa Explorer) project, which includes conceptual plans for a robotic system capable of exploring Europa’s icy subterranean oceans.

Europa, Jupiter’s sixth closest moon, is thought to be one of the more habitable pockets of our solar system, as it’s believed to have a salty liquid water ocean beneath its surface. The ocean is also shielded from radiation, making Europa a promising host for alien life.

Read more

New optical material offers unprecedented control of light and thermal radiation

Abstract: Columbia Engineers discover that samarium nickelate shows promise for active photonic devices — SmNiO3 could potentially transform optoelectronic technologies, including smart windows, infrared camouflage, and optical communications.

A team led by Nanfang Yu, assistant professor of applied physics at Columbia Engineering, has discovered a new phase-transition optical material and demonstrated novel devices that dynamically control light over a much broader wavelength range and with larger modulation amplitude than what has currently been possible. The team, including researchers from Purdue, Harvard, Drexel, and Brookhaven National Laboratory, found that samarium nickelate (SmNiO3) can be electrically tuned continuously between a transparent and an opaque state over an unprecedented broad range of spectrum from the blue in the visible (wavelength of 400 nm) to the thermal radiation spectrum in the mid-infrared (wavelength of a few tens of micrometers). The study, which is the first investigation of the optical properties of SmNiO3 and the first demonstration of the material in photonic device applications, is published online today in Advanced Materials.

“The performance of SmNiO3 is record-breaking in terms of the magnitude and wavelength range of optical tuning,” Yu says. “There is hardly any other material that offers such a combination of properties that are highly desirable for optoelectronic devices. The reversible tuning between the transparent and opaque states is based on electron doping at room temperature, and potentially very fast, which opens up a wide range of exciting applications, such as ‘smart windows’ for dynamic and complete control of sunlight, variable thermal emissivity coatings for infrared camouflage and radiative temperature control, optical modulators, and optical memory devices.”

Read more

Vint Cerf’s Outlook for the Internet He Helped Create

Internet pioneer Vint Cerf sees a secure future for the network of networks he helped create four decades ago as the co-developer of TCP/IP, the protocol that facilitates internet communications.

“We’re much more conscious of the need to make the system more secure than it has been,” Cerf, Google’s chief internet evangelist, says in an interview with Information Security Media Group. “And there’s a lot going on in the Internet Engineering Task Force [an international community of network designers, operators, vendors and researchers] to achieve that objective. And I anticipate in the course of the next decade or so that we will actually see a lot more mechanisms in place in order to enhance security and privacy and safety.”

But if internet security isn’t improved, Cerf says, “people will decide it’s not an environment they find worthy of trust, in which case they’ll look for something else. Maybe, something will replace the internet that’s more secure than it is today.”

Read more

Engineers give new meaning to the phrase ‘cool clothes’

Cannot wait for this material so that I can finally enjoy my run in the park near my US home in August.


WASHINGTON — Engineers have created clothing for a warming world — a fabric that allows your body heat to escape far better than other materials do.

It hasn’t been worn or tested by humans, so outside experts caution this is far from a sure thing, but a team at Stanford University engineered a fabric using nano technology that not only allows moisture to leave the body better, but helps infrared radiation escape better. As a result, they say in Thursday’s journal Science, the body should feel around 4.8 degrees (2.7 degrees Celsius) cooler than cotton and 3.8 degrees (2.1 degrees Celsius) chillier than commercially available synthetics.

This is designed for a warmer world — not just because climate change is making temperatures hotter, but because it takes a lot of energy to heat and cool people’s offices and homes, said study lead author Yi Cui, a professor of materials and engineering.

Read more