Toggle light / dark theme

Scientists Replicate Nature’s Finest Fibers With New 3D Printing Technique

Researchers have developed a high-resolution embedded 3D-printing technique that enables the fabrication of ultra-fine fibers, mimicking nature’s structures. Using a solvent exchange process, they achieved unprecedented resolutions of 1.5 microns, unlocking new possibilities for bioinspired materials and advanced engineering applications.

Researchers have been exploring new methods to produce and replicate the diverse and valuable features found in nature. Fine hairs and fibers, which are ubiquitous in the natural world, serve various purposes, from sensory functions to contributing to the unique consistency of hagfish slime.

MechSE Professors Sameh Tawfick and Randy Ewoldt, along with doctoral candidate M. Tanver Hossain and external collaborators, have addressed this need using their advanced embedded 3D-printing technique, recently published in Nature Communications.

Solid state lubricant uses atomically thin sheets to achieve extremely low friction

Finding the right lubricant for the right purpose is a task that is often extremely important in industry. Not only to reduce friction, overheating and wear, but also to save energy. At TU Wien, the research groups of Prof Carsten Gachot (Tribology, Mechanical Engineering) and Prof Dominik Eder (Chemistry) are therefore working together to develop innovative, improved lubricants.

The team has now presented a new type of material with special properties: The lubricant COK-47 is not liquid like lubricating oil, but a powdery solid substance. On a nanoscale, it consists of stacks of atomically thin sheets, like a tiny stack of cards.

When the material comes into contact with , these platelets can slide past each other very easily—a so-called tribofilm is created, which ensures extremely low . This makes COK-47 a highly interesting in .

Microfluidic component library component library enables rapid, low-cost device prototyping

Researchers have developed a freely available droplet microfluidic component library, which promises to transform the way microfluidic devices are created. This innovation, based on low-cost rapid prototyping and electrode integration, makes it possible to fabricate microfluidic devices for under $12 each, with a full design-build-test cycle completed within a single day. The components are biocompatible, high-throughput, and capable of performing multistep workflows, such as droplet generation, sensing, sorting, and anchoring, all critical for automating microfluidic design and testing.

Microfluidics, particularly droplet-based systems, has become a promising technology for diverse fields, including protein engineering, single-cell sequencing, and nanoparticle synthesis. However, the traditional methods of fabricating —typically using PDMS (polydimethylsiloxane)—are time-consuming and costly, often requiring cleanroom facilities or external vendors.

While alternatives like laser cutting and 3D printing have been explored, these methods often suffer from limitations in resolution, material compatibility, and scalability. As a result, there has been an urgent need for a more efficient, cost-effective, and accessible fabrication method to help propel innovation in microfluidic technology.

Light-powered breakthrough enables precision tuning of quantum dots

Researchers at North Carolina State University have demonstrated a new technique that uses light to tune the optical properties of quantum dots—making the process faster, more energy-efficient and environmentally sustainable—without compromising material quality.

The findings are published in the journal Advanced Materials.

“The discovery of quantum dots earned the Nobel Prize in chemistry in 2023 because they are used in so many applications,” says Milad Abolhasani, corresponding author of a paper on the work and ALCOA Professor of Chemical and Biomolecular Engineering at NC State. “We use them in LEDs, , displays, quantum technologies and so on. To tune their , you need to tune the bandgap of quantum dots—the minimum energy required to excite an electron from a bound state to a free-moving state—since this directly determines the color of light they emit.

3D nanoprinting technique can transform ceramics for high-performance systems, from disease detection to space travel

The same material from which you drink your morning coffee could transform the way scientists detect disease, purify water, and insulate space shuttles thanks to an entirely new approach to ceramic manufacturing.

Published in Advanced Science, 3D-AJP is an aerosol jet 3D nanoprinting technique that allows for the fabrication of highly complex ceramic structures that—at just 10 micrometers (a fraction of the width of human hair)—are barely visible to the naked eye. These 3D structures are made up of microscale features including pillars, spirals, and lattices that allow for controlled porosity, ultimately enabling advances in ceramic applications.

“It would be impossible to machine ceramic structures as small and as precise as these using traditional manufacturing methods,” explained Rahul Panat, professor of mechanical engineering at Carnegie Mellon University and the lead author of the study. “They would shatter.”

Researchers spin ‘wheel of fortune’ to find a fundamental proof of quantum mechanics

Researchers from the National University of Singapore (NUS) and University of New South Wales (UNSW) Sydney have proven that a spinning atomic nucleus really is fundamentally a quantum resource. The teams were led respectively by Professor Valerio Scarani, from NUS Department of Physics, and Scientia Professor Andrea Morello from UNSW Engineering. The paper was published in the journal Newton on 14 February 2025.

It has long been inferred that tiny particles such as electrons or protons are indeed quantum due to the way they get deflected in a magnetic field. However, when left to spin freely, they appear to behave in exactly the same way as a classical spinning item, such as a Wheel of Fortune turning on its axis. For more than half a century, experts in spin resonance have taken this fact as a universal truth.

For the same reason, a technician or a doctor operating a (MRI) machine at the hospital never needed to understand quantum mechanics—the spinning of the protons inside the patient’s body produces the same kind of magnetic field that would be created by attaching a fridge magnet to a spinning wheel.

Copper-Based Electrocatalysts: Using Corrosion for Efficient Biomass Upgrading

Researchers at NIMTE have turned metal corrosion into a tool for efficient biomass upgrading, achieving high HMF-to-BHMF conversion rates with a CoCuMW/CF electrode. Their findings offer a low-cost, sustainable solution for bio-based chemical production.

A research team led by Prof. Jian Zhang from the Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS) has harnessed metal corrosion to develop high-performance electrodes, facilitating the efficient and cost-effective upgrading of bio-based 5-hydroxymethylfurfural (HMF). Their findings were published in Chem Catalysis.

While corrosion is typically associated with material degradation and economic loss, researchers are now investigating its potential for advantageous applications, particularly in biomass upgrading.

Learning from catastrophe

Engineers are renowned clock-problem solvers. They’re also notorious for treating every problem like a clock. Increasing specialization and cultural expectations play a role in this tendency. But so do engineers themselves, who are typically the ones who get to frame the problems they’re trying to solve in the first place.

In his latest book, Wicked Problems, Guru Madhavan argues that the growing number of cloudy problems in our world demands a broader, more civic-minded approach to engineering. “Wickedness” is Madhavan’s way of characterizing what he calls “the cloudiest of problems.” It’s a nod to a now-famous coinage by Horst Rittel and Melvin Webber, professors at the University of California, Berkeley, who used the term “wicked” to describe complex social problems that resisted the rote scientific and engineering-based (i.e., clock-like) approaches that were invading their fields of design and urban planning back in the 1970s.

Madhavan, who’s the senior director of programs at the National Academy of Engineering, is no stranger to wicked problems himself. He’s tackled such daunting examples as trying to make prescription drugs more affordable in the US and prioritizing development of new vaccines. But the book isn’t about his own work. Instead, Wicked Problems weaves together the story of a largely forgotten aviation engineer and inventor, Edwin A. Link, with case studies of man-made and natural disasters that Madhavan uses to explain how wicked problems take shape in society and how they might be tamed.

‘Gut-on-chip’ can predict immunotherapy outcomes for melanoma patients

A team of researchers has developed a “gut-on-chip” (a miniature model of the human intestine on a chip-sized device) capable of reproducing the main features of intestinal inflammation and of predicting the response of melanoma patients to immunotherapy treatment. The results have just been published in Nature Biomedical Engineering.

The interaction between microbiota and has long been known. It is the result of both systemic effects, i.e., the elicited in the entire body by immunotherapy, and local processes, especially in the gut, where most of the bacteria that populate our body live. However, the latter can only be studied in animal models, with all their limitations.

Indeed, there is no clinical reason to subject a patient receiving immunotherapy for melanoma to colonoscopy and colon biopsy. Yet intestinal inflammation is one of the main side effects of this treatment, often forcing the therapy to be discontinued.

Scientists Think They Could Revolutionize Computing by Leveraging Quantum Teleportation

To test this new system, the team executed what is known as Grover’s search algorithm—first described by Indian-American computer scientist Lov Grover in 1996. This search looks for a particular item in a large, unstructured dataset using superposition and entanglement in parallel. The search algorithm also exhibits a quadratic speedup, meaning a quantum computer can solve a problem with the square root of the input rather than just a linear increase. The authors report that the system achieved a 71 percent success rate.

While operating a successful distributed system is a big step forward for quantum computing, the team reiterates that the engineering challenges remain daunting. However, networking together quantum processors into a distributed network using quantum teleportation provides a small glimmer of light at the end of a long, dark quantum computing development tunnel.

“Scaling up quantum computers remains a formidable technical challenge that will likely require new physics insights as well as intensive engineering effort over the coming years,” David Lucas, principal investigator of the study from Oxford University, said in a press statement. “Our experiment demonstrates that network-distributed quantum information processing is feasible with current technology.”