Toggle light / dark theme

Another new interface method.


Engineering researchers at The University of Texas at Austin have designed ultra-flexible, nanoelectronic thread (NET) brain probes that can achieve more reliable long-term neural recording than existing probes and don’t elicit scar formation when implanted.

The researchers described their findings in a research article published in Science Advances (“Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration”).

ultra-flexible probe in neural tissue

Nice.


CAMBRIDGE, Mass. — Determining the exact configuration of proteins and other complex biological molecules is an important step toward understanding their functions, including how they bind with receptors in the body. But such imaging is difficult to do. It usually requires the molecules to be crystallized first so that X-ray diffraction techniques can be applied — and not all such molecules can be crystallized.

Now, a new method developed by researchers at MIT could lead to a way of producing high-resolution images of individual biomolecules without requiring crystallization, and it could even allow zoomed-in imaging of specific sites within the molecules. The technique could also be applied to imaging other kinds of materials, including two-dimensional materials and nanoparticles.

The findings are reported this week in the Proceedings of the National Academy of Sciences, in a paper by Paola Cappellaro, the Esther and Harold E. Edgerton Associate Professor of Nuclear Science and Engineering at MIT, and others at MIT and at the Singapore University of Technology and Design.

Read more

Great read and highlights what I have been showing folks around the convergence that is occurring between technology and biology via Quantum. We’re achieving (in the Epoch chart on Singularity Evolution) Epoch 5 via Quantum Bio and our work we’re seeing from DARPA, Microsoft, Amazon, Google, and others. Synbio has to mimic the properties we see with Quantum Biology/ Biosystems. And, things like DARPA’s own RadioBio will enable and expose many things on multiple fronts in Biosensors (including security), IoT, healthcare/ medical prevention management and treatments, AI, etc.


Singularity – the state of being singular; Oneness.

The biological system is a natural form of technology. A simple examination of the nanobiology of the macromolecular system of any cell will attest to this – enzymes and structural proteins are veritable nanomachines, linked to the information processing network of DNA and plasma membranes. Far from being a primordial or rudimentary organic technology – we are discovering more and more the level of complexity and paragon technological sophistication of living systems, which as is being discovered, even includes non-trivial quantum mechanical phenomena once thought to only be possible in the highly specialized and controlled environment of the laboratory.

Reciprocally, soon our technologies will become living systems – particularly through nanotechnology (which is being accomplished through reverse engineering and hybridization with biomolecules, particularly DNA) and general artificial intelligence – machine sentience. Following this parallelization of biology with technology, we can examine how humanity as a technological supraorganism is undergoing a period of punctuated speciation – an evolutionary transformation of both our inner and outer world.

MIT spinout Manus Biosynthesis engineers microbes to produce rare and expensive ingredients for noncaloric beverages, perfumes, toothpastes, detergents, pesticides, and therapeutics. Spun out of the MIT Department of Chemical Engineering, Manus technologies could lead to new discoveries in drug development and product ingredients.

Read more

Engineers at the U.S. Army Armament Research, Development and Engineering Center, or ARDEC, have been making advancements in an initiative called “Component Miniaturization.”

Its mission focuses on making armament systems more precise, energy efficient, scalable and effective by reducing the size of critical components in sub-systems such as safe and arm devices, electronics packages, power supplies and inertial measurement systems. Size reductions in one sub-system can have a positive effect on another. For example, a smaller and more efficient electronics package design can reduce power supply demands as well as reduce the need for heavier supporting structures. The space savings and mass savings could then be used to add a larger explosive warhead or increase control surfaces for additional maneuverability. The reduced size and mass could also allow for additional portability to smaller calibers or to systems with greater launch velocities.

The initiative involves several discrete projects, some of which are described below:

Read more

Nice.


Researchers at the University of Central Florida (UCF) in the US are combining nanoscience with the principle of Faraday rotation, a magnetic phenomenon discovered in 1845, in a new method for speedy medical tests.

The team applied the magneto-optical technique, called frequency-domain Faraday rotation spectroscopy—or fd-FRS, to characterize proteins, using antibody-functionalized magnetic nanoparticles (MNPs).

“Fd-FRS is a new way of looking at the interaction between light and magnetized material,” says Shawn Putnam, assistant professor UFC’s College of Engineering & Computer Science. “We covered the surfaces of magnetic nanoparticles with a layer of biological sensors and measured their movement after exposure to their corresponding biological targets for detection.”

NICE.


The Science

Newswise — Quantum computers — a possible future technology that would revolutionize computing by harnessing the bizarre properties of quantum bits, or qubits. Qubits are the quantum analogue to the classical computer bits “0” and “1.” Engineering materials that can function as qubits is technically challenging. Using supercomputers, scientists from the University of Chicago and Argonne National Laboratory predicted possible new qubits built out of strained aluminum nitride. Moreover, the scientists showed that certain newly developed qubits in silicon carbide have unusually long lifetimes.

The Impact

Nice new algorithm for humanoid systems.


A person dissipates various kind of emotion during the daily conversation. The expression actually depends on the statement of the narrator but, sometimes it is very difficult to perceive someone’s sentiment behind the speech. To unveil the emotion behind someone’s speech, scientists created an artificial intelligence algorithm.

A research team from Massachusetts Institute of Technology’s(MIT) from Computer Science and Artificial Intelligence Laboratory (CSAIL) and Institute for Medical Engineering and Science (IMES) built a wearable app that is programmed with the algorithm. It could be a perfect alternative of polygraph because polygraphs are not really reliable because it has a lot of errors. Their invention was first officially introduced in the official press release of MIT News.

Ph.D. candidate Mohammad Ghassemi, lead researcher of this program said in a statement, “Our work is a step in this direction, suggesting that we may not be that far away from the world where people can have an AI social coach right in their pocket”. Ghassemi and his team equipped a fitness tracker with the app that collects physical and speech data to examine the tonal characteristics.

Read more

A research team led by Professor Ed X. Wu of the Department of Electrical and Electronic Engineering at the University of Hong Kong has used an innovative neuroimaging tool to interrogate the complex brain networks and functions.

The team has successfully manipulated two pioneering technologies: optogenetics and imaging (fMRI), for investigation of the dynamics underlying activity propagation. Their breakthrough to simultaneously capture large-scale brain-wide neural activity propagation and interaction dynamics, while examining their functional roles has taken scientists a step further in unravelling the mysteries of the brain. It could lead to the development of new neurotechnologies for early diagnosis and intervention of brain diseases including autism, Alzheimer’s disease or dementia.

The findings have recently been published in the prestigious international academic journal Proceedings of the National Academy of Sciences (PNAS).

Read more

Nice.


Submarine manufacturer saves major time and cost by 3D Printing a titanium Variable Ballast tank with EBM technology from Sciaky.

The production of an Arctic Explorer submarine was nearly scuppered after the supplier of a component went out of business. To find a solution, however, International Submarine Engineering (ISE) didn’t have to dive too deep. They turned instead to additive manufacturing.

ISE had originally planned to produce the titanium Variable Ballast (VB) tank with traditional manufacturing methods. Their key supplier was an overseas titanium forging facility that previously produced propellant tanks for the Russian space program. But then the supplier went bankrupt.