Toggle light / dark theme

This Startup Raised $15 Million To Reduce Errors In Quantum Computing

Q-CTRL, an Australian-based quantum computing software company that makes “quantum firmware,” on Tuesday announced a $15 million series A funding round led by Square Peg Capital. Sierra Ventures also participated in the round, joining existing investors Horizons Ventures, Main Sequence Ventures, and Sequoia Capital.

The primary purpose of the round, says founder and CEO Michael Biercuk, is to expand and grow the company. It currently has 25 employees and aims to double that number in the next 12 to 18 months. It’s also opening an office in Los Angeles where it hopes to add more employees and will expand its product offerings in the field of quantum sensing.

Biercuk is a professor at the University of Sydney and has been conducting research in quantum computing for over a decade. He’s particularly interested in combining the principles of control engineering to quantum computing and other systems such as quantum sensing.

125 Women in STEM Selected as AAAS IF/THEN Ambassadors

Women innovators across the United States have been selected as AAAS IF/THEN® Ambassadors by the American Association for the Advancement of Science and Lyda Hill Philanthropies to share their stories and serve as high-profile role models for middle-school girls.

Information about the 125 women selected as AAAS IF/THEN® Ambassadors can be found at www.ifthenshecan.org/ambassadors.

IF/THEN®, a national initiative of Lyda Hill Philanthropies, seeks to further women in science, technology, engineering and math by empowering current innovators and inspiring the next generation of pioneers.

Caltech Faculty Honored with Breakthrough and New Horizons Prizes

Caltech’s Katherine L. (Katie) Bouman has been named a recipient of the 2020 Breakthrough Prize for Fundamental Physics as part of the Event Horizon Telescope (EHT) team that generated the first-ever image of a black hole, while Xie Chen and Xinwen Zhu have each received 2020 New Horizons prizes from the same foundation for their work in physics and mathematics, respectively.

The Breakthrough Prize, now in its eighth year, is considered the world’s most generous science prize. Each Breakthrough Prize is $3 million and the 347 authors of the six EHT papers will divide the award.

“I was stunned and absolutely thrilled to hear the news,” says Bouman, assistant professor of computing and mathematical sciences and Rosenberg Scholar in Caltech’s Division of Engineering and Applied Science. “I’m so lucky to work with an amazingly talented group of individuals that continues to push the boundaries of science every day. It is such a privilege and an honor to share this award with each one of them.”

Rimac Bumps Tesla’s New Roadster To Second Place With New Concept_Two

When Elon Musk and the team at Tesla unveiled the Tesla Roadster 2.0, a new stake was pounded into the tarmac, cementing the new Roadster and electric cars as the performance kings in nearly every meaningful category. It puts supercars to shame and at a fraction of the price.

With such a high bar being set at such a low price point, a no holds barred electric supercar seemed to be the only thing that could possibly top the high marks set by the new Tesla Roadster. Travel with me over to unlikely Sveta Nedelja, Croatia, where Mate Rimac and his motley crew of twisted engineering geniuses at Rimac Automobili assemble battery powered beasts that shake the boots off even the most seasoned track driver.

A 30 million euro round of fundraising last year from Asia’s largest battery manufacturer, Camel Group Ltd laid the foundation for Rimac’s new Concept_Two and now, finally, the beast is loose with full specs and a photo shoot to get fans drooling.

How America’s First Digitally Operated Reactor Could Push Nuclear Technology Forward

“We can send signals to areas, such as schools in developing countries, that do not have the luxury of their own nuclear reactor facility and the associated educational infrastructure.” said Seungjin Kim, head of the Purdue’s School of Nuclear Engineering, in a July announcement. “As long as they have internet and this partnership with Purdue, they can see and study how the reactor works.”

PUR-1’s completion comes amidst a hunt for the next generation of nuclear tech. There are traveling wave reactors, which would hypothetically consume today’s nuclear waste and has garnered the interest of investors like Bill Gates. Then there are thorium reactors, which would would use less uranium and produce far less waste in the first place and has been promoted by Democratic presidential candidate Andrew Yang. Neither technology has been put into civilian practice yet.

For now, the digital nuclear plant is here. While it likely won’t revolutionize the industry as the other two technologies could, digitization might make plants run more efficiently and drive a low risk of accident even lower.

Psychosensory electronic skin technology for future AI and humanoid development

Professor Jae Eun Jang’s team in the Department of Information and Communication Engineering has developed electronic skin technology that can detect “prick” and “hot” pain sensations like humans. This research result has applications in the development of humanoid robots and prosthetic hands in the future.

Scientists are continuously performing research to imitate tactile, olfactory and palate senses, and is expected to be the next mimetic technology for various applications. Currently, most tactile sensor research is focused on physical mimetic technologies that measure the pressure used for a robot to grab an object, but psychosensory tactile research on mimicking human tactile sensory responses like those caused by soft, smooth or rough surfaces has a long way to go.

Professor Jae Eun Jang’s team has developed a tactile sensor that can feel and temperature like humans through a joint project with Professor Cheil Moon’s team in the Department of Brain and Cognitive Science, Professor Ji-woong Choi’s team in the Department of Information and Communication Engineering, and Professor Hongsoo Choi’s team in the Department of Robotics Engineering. Its key strengths are that it has simplified the sensor structure and can measure pressure and temperature at the same time. Furthermore, it can be applied on various tactile systems regardless of the measurement principle of the sensor.

Quantum engineering atomically smooth single-crystalline silver films

Ultra-low-loss metal films with high-quality single crystals are in demand as the perfect surface for nanophotonics and quantum information processing applications. Silver is by far the most preferred material due to low-loss at optical and near infrared (near-IR) frequencies. In a recent study now published on Scientific Reports, Ilya A. Rodionov and an interdisciplinary research team in Germany and Russia reported a two-step approach for electronic beam evaporation of atomically smooth single crystalline metal films. They proposed a method to establish thermodynamic control of the film growth kinetics at the atomic level in order to deposit state-of-the-art metal films.

The researchers deposited 35 to 100 nm thick, single-crystalline silver with sub-100 picometer (pm) with theoretically limited optical losses to form ultrahigh-Q nanophotonic devices. They experimentally estimated the contribution of material purity, material grain boundaries, surface roughness and crystallinity to the optical properties of metal films. The team demonstrated a fundamental two-step approach for single-crystalline growth of silver, gold and aluminum films to open new possibilities in nanophotonics, biotechnology and superconductive quantum technologies. The research team intends to adopt the method to synthesize other extremely low-loss single-crystalline metal films.

Optoelectronic devices with plasmonic effects for near-field manipulation, amplification and sub-wavelength integration can open new frontiers in nanophotonics, quantum optics and in quantum information. Yet, the ohmic losses associated in metals are a considerable challenge to develop a variety of useful plasmonic devices. Materials scientists have devoted research efforts to clarify the influence of metal film properties to develop high performance material platforms. Single-crystalline platforms and nanoscale structural alterations can prevent this problem by eliminating material-induced scattering losses. While silver is one of the best known plasmonic metals at optical and near-IR frequencies, the metal can be challenging for single-crystalline film growth.

Engineers develop bone-like metal foam that can be ‘healed’ at room temperature

Bone like foam created by researchers is showing Wolverine like healing properties.


For 6,000 years, humans have been making things from metal because it’s strong and tough; a lot of energy is required to damage it. The flip side of this property is that a lot of energy is required to repair that damage. Typically, the repair process involves melting the metal with welding torches that can reach 6,300 °F.

Now, for the first time, Penn Engineers have developed a way to repair at room temperature. They call their technique “healing” because of its similarity to the way bones heal, recruiting raw material and energy from an external source.

The study was conducted by James Pikul, assistant professor in the Department of Mechanical Engineering and Applied Mechanics and Zakaria Hsain, a graduate student in his lab.

/* */