Toggle light / dark theme

Quantum sensing is being used to outpace modern sensing processes by applying quantum mechanics to design and engineering. These optimized processes will help beat the current limits in processes like studying magnetic materials or studying biological samples. In short, quantum is the next frontier in sensing technology.

As recently as 2,019 spin defects known as qubits were discovered in 2D materials (hexagonal boron nitride) which could amplify the field of ultrathin . These scientists hit a snag in their discovery which has unleashed a scientific race to resolve the issues. Their sensitivity was limited by their low brightness and the low contrast of their magnetic resonance signal. As recently as two weeks ago on August 9 2021, Nature Physics published an article titled “quantum sensors go flat,” where they highlighted the benefits and also outlined current shortfalls of this new and exciting means of sensing via qubits in 2D materials.

A team of researchers at Purdue took on this challenge of overcoming qubit signal shortcomings in their work to develop ultrathin quantum sensors with 2D materials. Their publication in Nano Letters was published today, September 2 2021, and they have solved some of the critical issues and yielded much better results through experimentation.

The study investigated whether electrical therapy, coupled with exercise, would show promise in treating tendon disease or ruptures. It showed that tendon cell function and repair can be controlled through electrical stimulation from an implantable device which is powered by body movement.


Researchers at CÚRAM, the SFI Research Centre for Medical Devices based at NUI Galway, have shown how the simple act of walking can power an implantable stimulator device to speed up treatment of musculoskeletal diseases.

The results of have been published in the prestigious journal Advanced Materials.

The research establishes the engineering foundations for a new range of stimulator devices that enable control of musculoskeletal tissue regeneration to treat tendon damage and disease and sports injuries, without the use of drugs or external stimulation.

Researchers at North Carolina State University have created a soft and stretchable device that converts movement into electricity and can work in wet environments.

“Mechanical energy—such as the kinetic energy of wind, waves, and vibrations from motors—is abundant,” says Michael Dickey, corresponding author of a paper on the work and Camille & Henry Dreyfus Professor of Chemical and Biomolecular Engineering at NC State. “We have created a that can turn this type of mechanical motion into . And one of its remarkable attributes is that it works perfectly well underwater.”

The heart of the energy harvester is a liquid metal alloy of gallium and indium. The alloy is encased in a hydrogel—a soft, elastic polymer swollen with water.

Genes can respond to coded information in signals—or filter them out entirely.


New research from North Carolina State University demonstrates that genes are capable of identifying and responding to coded information in light signals, as well as filtering out some signals entirely. The study shows how a single mechanism can trigger different behaviors from the same gene—and has applications in the biotechnology sector.

“The fundamental idea here is that you can encode information in the dynamics of a signal that a gene is receiving,” says Albert Keung, corresponding author of a paper on the work and an assistant professor of chemical and biomolecular engineering at NC State. “So, rather than a signal simply being present or absent, the way in which the signal is being presented matters.”

For this study, researchers modified a yeast cell so that it has a gene that produces fluorescent proteins when the cell is exposed to blue .

Technion scientists have created a wearable motion sensor capable of identifying movements such as bending and twisting. This smart ‘e-skin’ was produced using a highly stretchable electronic material, which essentially forms an electronic skin capable of recognizing the range of movement human joints normally make, with up to half a degree precision.

This breakthrough is the result of collaborative work between researchers from different fields in the Laboratory for Nanomaterial-Based Devices, headed by Professor Hossam Haick from the Technion Wolfson Faculty of Chemical Engineering. It was recently published in Advanced Materials and was featured on the journal’s cover.


This wearable motion sensor, which senses bending and twisting, can be applied in healthcare and manufacturing.

Volkner’s over-the-top motorhome package slides a 1,480-hp Bugatti Chiron aboard its $2.4-million Performance S motorhome and treats owners of the elaborate ultra-luxury/hypercar vehicle experience.


In the past, we’ve seen Volkner edge out its few competitors for “most expensive motorhome of the Düsseldorf Caravan Salon” honors with stretched luxury homes as “modestly” priced as $1.7 million. This year, it leaves the competition in the dust, going all out on the priciest, most over-the-top motorhome package on the show floor. It slides a 1,480-hp Bugatti Chiron aboard its $2.4-million Performance S motorhome and treats owners of the elaborate ultra-luxury/hypercar vehicle experience to a lavishly appointed abode complete with custom Burmester audio system carefully tailored to the mobile space.

For more than a decade, Volkner has been wowing the Düsseldorf crowds with the sporty roadsters and supercars it manages to squeeze between the axles of its huge motorhomes. This year, it’s really upped its own game.

The $3-million Bugatti Chiron actually costs more than the Performance S motorhome itself and packs more than triple the horsepower of Volkner’s 430-hp 18-ton 39-footer. We preferred the Porsche 911 GT2 Volkner brought to the 2018 Caravan Salon not a full year after the car’s Nürburgring record, but there’s no denying that the Chiron and Performance S team is an absolutely stunning package, a pairing of extreme, over-the-top motorized engineering like few we’ll ever see.

Black holes are more than just massive objects that swallow everything around them – they’re also one of the universe’s biggest and most stable energy sources. That would make them invaluable to the type of civilization that needs huge amounts of power, such as a Type II Kardashev civilization. But to harness all of that power, the civilization would have to encircle the entire black hole with something that could capture the power it is emitting.

One potential solution would be a Dyson sphere – a type of stellar mega engineering project that encapsulates an entire star (or, in this case, a black hole) in an artificial sheath that captures all of the energy the object at its center emits. But even if it was able to capture all of the energy the black hole emits, the sphere itself would still suffer from heat loss. And that heat loss would make it visible to us, according to new research published by an international team led by researchers at the National Tsing Hua University in Taiwan.

Almost a third of working Americans are in some form of medical debt, with nearly a quarter of those with an outstanding balance owing $10,000 or more. Many Americans feel anxious about health care costs and are depleting their own savings to pay the bills, or avoiding going to the doctor due to the cost, and in some cases, as in the case of William Osman, embarking on bizarre projects to highlight the issue.

The YouTuber and engineer, who is known for his bizarre projects that combine engineering and entertainment, posted a video last week outlining how a recent hospital visit requiring X-rays resulted in a staggering $69,210.32 bill.

He explains that, thanks to his health insurance policy, he will only have to pay roughly $2,500, and that, when combined with annual insurance costs, the total will be around $8,500. In a comedic sequence, he laments, “I’m a slave to medical debt now. I have to sell all my things, I have to sell my friends’ belongings.” Then, he embarks on an extremely reckless and risky endeavor to build his own fully functional X-ray machine for less than the cost of his actual medical expenses.

The human body can be genetically inclined to attack its own cells, destroying the beta cells in the pancreas that make insulin, which helps convert sugar into energy. Called Type 1 diabetes, this disorder can occur at any age and can be fatal if not carefully managed with insulin shots or an insulin pump to balance the body’s sugar levels.

But there may be another, personalized option on the horizon, according to Xiaojun “Lance” Lian, associate professor of biomedical engineering and biology at Penn State. For the first time, Lian and his team converted human embryonic stem cells into beta cells capable of producing insulin using only small molecules in the laboratory, making the process more efficient and cost-effective.

Stem cells can become other cell types through signals in their environment, and some mature cells can revert to stem cells—induced pluripotency. The researchers found that their approach worked for human embryonic and induced pluripotent stem cells, both derived from federally approved stem cell lines. According to Lian, the effectiveness of their approach could reduce or eliminate the need for human embryonic stem cells in future work. They published their results today (Aug. 26) in Stem Cell Reports.