Toggle light / dark theme

New materials could enable longer-lasting implantable batteries

For the last few decades, battery research has largely focused on rechargeable lithium-ion batteries, which are used in everything from electric cars to portable electronics and have improved dramatically in terms of affordability and capacity. But nonrechargeable batteries have seen little improvement during that time, despite their crucial role in many important uses such as implantable medical devices like pacemakers.

Now, researchers at MIT have come up with a way to improve the energy density of these nonrechargeable, or “primary,” batteries. They say it could enable up to a 50% increase in useful lifetime, or a corresponding decrease in size and weight for a given amount of power or energy capacity, while also improving safety, with little or no increase in cost.

The new findings, which involve substituting the conventionally inactive battery electrolyte with a material that is active for energy delivery, are reported today in the journal Proceedings of the National Academy of Sciences, in a paper by MIT Kavanaugh Postdoctoral Fellow Haining Gao, graduate student Alejandro Sevilla, associate professor of mechanical engineering Betar Gallant, and four others at MIT and Caltech.

Researchers fed microalgae on leftover coffee grounds to produce high-quality biodiesel

It could decrease reliance on palm oil to produce biofuel.

Have you ever guessed that a leftover coffee could turn into biodiesel? Here’s a remarkable development for bioscience. Seemingly, Aston University scientists produced high-quality biodiesel microalgae fed on leftover coffee. According to Aston University’s release, this development is also a breakthrough in the microalgal cultivation system.

Dr. Vesna Najdanovic, senior lecturer in chemical engineering, and Dr. Jiawei Wang were part of a team that produced algae and subsequently turned it into fuel.

The results of the study were published in the November 2022 issue of Renewable and Sustainable Energy Reviews.


1, 2

Seemingly, Aston University scientists produced high-quality biodiesel microalgae fed on leftover coffee. According to Aston University’s release, this development is also a breakthrough in the microalgal cultivation system.

Cooling the Earth

Is solar geoengineering an alternative solution to the climate crisis?

Solar geoengineering is a branch of geoengineering that focuses on reflecting sunlight back into outer space to reduce global warming. There are several solar geoengineering techniques being researched; the most feasible one consists of spraying reflective aerosols in the stratosphere.

Scientists also consider brightening marine clouds to make them more reflective.

Recently, the White House’s Office of Science and Technology Policy launched a five-year research plan to investigate methods for reflecting solar radiation back to outer space in an attempt to reduce the effects of global warming.


Pixabay/Jürgen Jester.

Engineering students have developed a 3D-printed prosthetic arm for people with disabilities

More affordable than the regular ones.

The Arm2u biomedical engineering team from the Barcelona School of Industrial Engineering (ETSEIB) of the Universitat Politècnica de Catalunya designed and constructed a configurable transradial prosthesis that responds to the user’s nerve impulses using 3D printing technology.

Arm2u is a prosthesis that can replace a missing arm below the elbow. It can be controlled with myoelectric control, which means that it is controlled by the natural electrical signals produced by muscle contraction.


UPC

As stated in the release, UPC bachelor’s and master’s degree students started off improving a prosthesis for people with disabilities using assistive technologies.

Beaming Clean Energy From Space — Caltech’s “Extraordinary and Unprecedented Project”

Technology capable of collecting solar power in space and beaming it to Earth to provide a global supply of clean and affordable energy was once considered science fiction. Now it is moving closer to reality. Through the Space-based Solar Power Project (SSPP), a team of California Institute of Technology (Caltech) researchers is working to deploy a constellation of modular spacecraft that collect sunlight, transform it into electricity, then wirelessly transmit that electricity wherever it is needed. They could even send it to places that currently have no access to reliable power.

“This is an extraordinary and unprecedented project,” says Harry Atwater, an SSPP researcher and Otis Booth Leadership Chair of Caltech’s Division of Engineering and Applied Science. “It exemplifies the boldness and ambition needed to address one of the most significant challenges of our time, providing clean and affordable energy to the world.”

Atwater, who is also the Howard Hughes Professor of Applied Physics and Materials Science, leads the project jointly with two other researchers: Ali Hajimiri, Bren Professor of Electrical Engineering and co-director of SSPP; and Sergio Pellegrino, Joyce and Kent Kresa Professor of Aerospace and Civil Engineering, co-director of SSPP, and a senior research scientist at the Jet Propulsion Laboratory (JPL.

Scientists Astonished

‘Like conductive Play-Doh’: breakthrough could point way to a new class of materials for electronic devices.

University of Chicago.

Founded in 1,890, the University of Chicago (UChicago, U of C, or Chicago) is a private research university in Chicago, Illinois. Located on a 217-acre campus in Chicago’s Hyde Park neighborhood, near Lake Michigan, the school holds top-ten positions in various national and international rankings. UChicago is also well known for its professional schools: Pritzker School of Medicine, Booth School of Business, Law School, School of Social Service Administration, Harris School of Public Policy Studies, Divinity School and the Graham School of Continuing Liberal and Professional Studies, and Pritzker School of Molecular Engineering.

New Device Creates Electricity Out Of Thin Air

While we may struggle with the production of electricity and green power now, a recent discovery by the University of Massachusetts in Amherst has discovered something quite amazing. One day, in the not far away future-we may have the ability to create electricity from thin air.

Well, technically we already do, but let me explain how this happened and what that means for us. The study was published in the journal Nature in February 2020. The title is “Power generation from ambient humidity using protein nanowires” and through this study, the researchers stumbled upon something quite amazing.

The project was started by electrical engineering student Xiaomeng Liu, who works in the lab with the study author Jun Yao, discovered a prototype that he had been working on and began doing something he didn’t expect. Even when he wasn’t running the machine, he was picking up on power output. “We were initially very perplexed,” Yao says.

Revolutionary technique to generate hydrogen more efficiently from water

A team of researchers from the National University of Singapore (NUS) have made a serendipitous scientific discovery that could potentially revolutionize the way water is broken down to release hydrogen gas—an element crucial to many industrial processes.

The team, led by Associate Professor Xue Jun Min, Dr. Wang Xiaopeng and Dr. Vincent Lee Wee Siang from the Department of Materials Science and Engineering under the NUS College of Design and Engineering (NUS CDE), found that light can trigger a new mechanism in a catalytic material used extensively in , where water is broken down into and oxygen. The result is a more energy-efficient method of obtaining hydrogen.

This breakthrough was achieved in collaboration with Dr. Xi Shibo from the Institute of Sustainability for Chemicals, Energy and Environment under the Agency for Science, Technology and Research (A*STAR); Dr. Yu Zhigen from the Institute of High Performance Computing under A*STAR; and Dr. Wang Hao from the Department of Mechanical Engineering under the NUS CDE.

Penguin feathers may be secret to effective anti-icing technology

Ice buildup on powerlines and electric towers brought the northern US and southern Canada to a standstill during the Great Ice Storm of 1998, leaving many in the cold and dark for days and even weeks. Whether it is on wind turbines, electric towers, drones, or airplane wings, dealing with ice buildup typically depends on techniques that are time consuming, costly and/or use a lot of energy, along with various chemicals. But, by looking to nature, McGill researchers believe that they have found a promising new way of dealing with the problem. Their inspiration came from the wings of Gentoo penguins who swim in the ice-cold waters of the south polar region, with pelts that remain ice-free even when the outer surface temperature is well below freezing.

We initially explored the qualities of the lotus leaf, which is very good at shedding water but proved less effective at shedding ice,” said Anne Kietzig, who has been looking for a solution for close to a decade. She is an associate professor in Chemical Engineering at McGill and the director of the Biomimetic Surface Engineering Laboratory. “It was only when we started investigating the qualities of penguin feathers that we discovered a material found in nature that was able to shed both water and ice.”