Toggle light / dark theme

Attempts to turn string theory into a workable theory of nature have led to the potential conclusion that our universe is a hologram—that what we perceive as three spatial dimensions is actually composed of only two. The greatest realization of this hologram-led program is a proposal that goes by the awkward and clunky name of the AdS/CFT correspondence, first proposed by string theorist Juan Maldacena in the late 1990s.

The AdS/CFT correspondence is not a solution to the problems posed by per se, but a statement motivated by advances in the theory when one takes the holographic principle seriously. It is also not a by itself, but it does tell us that we are not entirely misguided when we make the bold claim that we live in a , and begin to dream about what that revelation might entail.

We need to, briefly I assure you, unpack these acronyms to see how powerful this connection is, and what it might teach us about the wider . The “AdS” stands for anti-de Sitter, which is a particular kind of solution to Einstein’s general theory of relativity. The name comes from Dutch physicist Willem de Sitter, who constructed a mock universe that was empty of all matter and energy with the exception of a strong outwards curvature.

New research enhances hybrid supercapacitors by creating more efficient electrodes, marking a significant step forward in energy storage technology.

Like batteries, supercapacitors are a type of energy-storage device. However, while batteries store energy electrochemically, supercapacitors store energy electrostatically—through the buildup of charge on their electrode surfaces.

Hybrid supercapacitors (HSCs) combine the advantages of both systems by incorporating battery-type and capacitor-type electrodes. Despite synthesis techniques that allow the active components in HSC electrodes to grow directly on conductive substrates without added binders (“self-supporting” electrodes), the fraction of active material in these electrodes has remained too low for commercial requirements.

Scientists have developed a new material from a mineral abundant on Mars that they claim could open the door to sustainable habitation on the red planet.

Researchers assessed the potential of a type of nanomaterials – ultrasmall components thousands of times smaller than a human hair – for clean energy production and building materials on Mars.

The study, published in the journal Advanced Functional Materials, found that a material typically considered a waste product by NASA can be altered to provide clean energy and sustainable electronics.

Tesla has officially launched its new Megafactory project in Shanghai, which will produce 10,000 Megapacks per year, according to a statement today.

A signing ceremony for the land acquisition of the project was held in Shanghai on Friday morning, marking the start of what the company called a “milestone project”

The Megapack is a powerful battery that stores and supplies energy to help stabilize the grid and prevent power outages.

Researchers at the University of Sussex have discovered the transformative potential of Martian nanomaterials, potentially opening the door to sustainable habitation on the red planet.

Using resources and techniques currently applied on the International Space Station and by NASA, Dr. Conor Boland, a Lecturer in Materials Physics at the University of Sussex, led a research group that investigated the potential of nanomaterials—incredibly tiny components thousands of times smaller than a —for clean energy production and on Mars.

Taking what was considered a by NASA and applying only sustainable production methods, including water-based chemistry and low-energy processes, the researchers have successfully identified within gypsum nanomaterials—opening the door to potential clean energy and sustainable technology production on Mars.

Scattered across the web are communities of programmers working to revive this seemingly outdated approach. Anchored in the concept of “HTML Energy,” a term coined by artists Laurel Schwulst and Elliott Cost, the movement is anything but a superficial appeal to retro aesthetics. It focuses on the tactile process of coding in HTML, exploring how the language invites self-expression and empowers individuals to claim their share of the web. Taking shape in small Discord channels and digital magazines, among other spaces, the HTML Energy movement is about celebrating the human touch in digital experiences.

Today, the majority of the internet is optimized for social engagement, e-commerce, and streaming. Most internet traffic is concentrated in a small number of sites, all of which are owned by the same handful of companies. From lengthy ads to aggressive cookie settings, minor obstacles and nuisances are baked in. Users are constantly reminded that their access to the internet is conditional on the monetary interests of a few. The situation with X (formerly known as Twitter) perfectly encapsulates this state of internet ownership: it only took one executive to spark a mass exodus from the platform and to fragment its long-lived communities.

However, despite the monopolistic landscape of Big Tech, one fundamental reality continues to justify the internet’s democratic reputation: anyone can publish a website for free with HTML. With an abundance of real estate, the web technically has space for everyone. It’s just a matter of traffic.

Groundbreaking research reveals new details about water vapor’s interaction with metals at an atomic level, with implications for corrosion management and clean-energy development.

When water vapor meets metal, the resulting corrosion can lead to mechanical problems that harm a machine’s performance. Through a process called passivation, it also can form a thin inert layer that acts as a barrier against further deterioration.

Either way, the exact chemical reaction is not well understood on an atomic level, but that is changing thanks to a technique called environmental transmission electron microscopy (TEM), which allows researchers to directly view molecules interacting on the tiniest possible scale.