Toggle light / dark theme

Wind turbines are a feat of engineering. The massive structures are visually impressive and generate vast amounts of clean energy via a natural and pollution-free source.

Because of that, you’d think they take a long time to install — especially when placed far out at sea.

However, at an offshore wind farm in Zhangpu, China, the state-owned China Three Gorges power company managed to get one up and running in just over a day, Electrek reports.

Explore the transformative journey from fear to boundless opportunity with John Hagel. Dive deep into the ‘passion of the Explorer,’ collaborative problem-solving, and the power of scalable learning. Discover narratives that fuel Silicon Valley’s growth and learn to embrace the ‘Explorer Mindset.’ Listen to this episode and embark on a journey from threat to opportunity, unlocking your potential and embracing transformative learning experiences that empower your personal and professional growth.

Researchers demonstrate a method to reduce the energy spread of electrons used in electron microscopes, opening the door to time-and energy-resolved studies of quasiparticles such as phonons and plasmons.

Conceived a century ago, electron microscopes are today standard fare in experimental research laboratories. By imaging a material with electrons, scientists can resolve details 1,000 times smaller than is possible with light. These devices can also employ pulsed electron beams to probe transient phenomena, such as the behavior of quasiparticles that a material hosts. Now Michael Yannai of Technion–Israel Institute of Technology and his colleagues demonstrate a way to improve that capability by reducing the energy spread of the electrons in a pulsed imaging beam [1]. Their method leaves the brightness of the beam unchanged, which is important for ultrafast imaging, as the ultrashort pulses used in this method necessarily comprise small numbers of electrons. “Our technique opens the path to many potential time-and energy-resolved explorations that are currently impossible,” says Ido Kaminer, who headed the team behind the research.

Electron energy spread is one of the key factors limiting an electron microscope’s resolution. The smaller this spread—the closer the beam is to being monochromatic—the better the resolution. The conventional method for reducing energy spread is to filter out electrons with energies outside of the desired range. But that process significantly reduces the electron flux, another factor that can limit a microscope’s performance.

The Crossfire transmitter perturbs the usual functioning on HDZero & Avatar HD FPV Goggles. If you get closer to the goggles’ power cable or goggle, the goggle will shut down or reboot. This video presents two solutions to solve this issue.

00:00 – Video starts.
00:07 – The problem (Crossfire emission power 250 mW)
00:35 – The problem (Crossfire emission power 500 mW)
01:08 – First approach: using a ferrite cable clip.
03:07 – Second approach: using a capacitor as a low-pass filter.
04:27 – Conclusions.

╔═╦╗╔╦╗╔═╦═╦╦╦╦╗╔═╗
║╚╣║║║╚╣╚╣╔╣╔╣║╚╣═╣ → http://bit.ly/3arWvOq.
╠╗║╚╝║║╠╗║╚╣║║║║║═╣ I Really Appreciate Your Support!
╚═╩══╩═╩═╩═╩╝╚╩═╩═╝

PCs are no longer the massive beige boxes that sit on your desk taking up a massive amount of working real estate. Thanks to modernization and miniaturization, PCs can now fit into a tiny box.

How tiny?

Well, a hockey puck is 3 inches in diameter and an inch thick, which is not a lot bigger than the Blackview MP80.


Need a powerful Windows 11 PC that’s not much bigger than a hockey puck and won’t cost you much? Then the Blackview MP80 is the mini PC for you.

Their advantages extend beyond reducing carbon emissions.

Thirteen US states are now implementing underground thermal energy networks to reduce buildings’ carbon emissions as part of a nationwide push to adopt cleaner energy sources.

Thermal energy networks use pipe loops that connect multiple buildings and provide heating and cooling through water-source heat pumps. Geothermal heat is commonly used in these networks, but it is also possible to bring in waste heat from other buildings through the sewer system.