Toggle light / dark theme

Researchers at the University of South Carolina in Columbia have demonstrated an experimental plasma device capable of cleaning gas samples of D4, one of the most common siloxanes. Drawing on a technique for creating plasma called dielectric barrier discharge, the group was able to significantly reduce the amount of D4 samples after treating it with a helium-based plasma.

The findings point to a new potential solution for accommodating landfill gas rich in siloxanes. They will be presented at the American Physical Society 71st Annual Gaseous Electronics Conference and 60th Annual meeting of the APS Division of Plasma Physics, which takes place Nov. 5–9 at the Oregon Convention Center in Portland.

“This is the first time dielectric barrier discharge has been used to remove volatile organic silicate compounds,” said Malik Tahiyat, one of the researchers involved with the study. “In our case, there’s no wait for removing it or material that has to be thrown out after a certain amount of time.”

Read more

If I were to make a prediction, I’d think there’s a good chance that it is not batteries. But capacitors.”

Today he may be making good on his prediction. The electric vehicle manufacturer confirmed that it has acquired a small San Diego lab that owns ultracapacitor patents and technology.

Maxwell Technologies provides dry electrode manufacturing technology that can be used to make to make batteries that power electric vehicles and renewable energy systems. The company announced that in an all-stock transaction it will merge and become a wholly owned by a subsidiary of Tesla.

Read more

It’s even more fascinating than we thought.


The Milky Way looks nothing like the flat space pancake it is usually depicted as. The newly-created and most accurate 3D map of our galaxy reveals that it’s warped and twisted, and even more fascinating.

A group of astronomers from Australia and China have built their “intuitive and accurate three-dimensional picture” by mapping the so-called “classical Cepheids.”

Burning their fuel quickly, those pulsating stars that live fast and die young are 100,000 times brighter than the Sun. The combination of their pulsation periods and known luminosity allowed the scientists to determine their location with the high accuracy of between 3 to 5 percent.

Read more

A team of scientists have made a new discovery about naturally occurring magnetic materials, which in turn could lead to the development of nanoscale energy sources used to power next generation electronic devices. Researchers from Japan’s Okayama University and UC Riverside’s Bourns College of Engineering worked together to study the gumboot chiton, a type of mollusk that produces teeth made of the magnetic mineral magnetite, in hopes of better understanding its genetic process.

Read more

The new design stores heat generated by excess electricity from solar or wind power in large tanks of white-hot molten silicon, and then converts the light from the glowing metal back into electricity when it’s needed. The researchers estimate that such a system would be much more affordable than lithium-ion batteries, which have been proposed as a viable, though expensive, method to store renewable energy. They also estimate that the system would cost about half as much as pumped hydroelectric storage—the cheapest form of grid-scale energy storage so far.


Delivering solar- or wind-generated power on demand, the system, which uses molten silicon, should be cheaper than other leading options.

Read more

Instead, the body of the Lamborghini Terzo Millennio concept car, made from exotic carbon nanotubes, would be used as a supercapacitor. Supercapacitors store and release energy in a manner different from that employed by batteries. They have certain advantages, but also serious disadvantages.

It could be years, if ever, before scientists from MIT and Lamborghini, which is part of the Volkswagen Group ( VLKAF ), can overcome the downsides. But the effort would be worth it, said Mauricio Reggiani, Lamborghini’s head of research and development.

“At the moment, we are really optimistic,” he said.

Read more

Chiral surfaces, which have differing responses for left- and right-handed circularly polarized (LCP and RCP) light, can be useful in optical experimentation. Metamaterials, which can be made into circular polarizers, are promising for creating chiral surfaces. Scientists at the Missouri University of Science and Technology (Rolla, MO) and the Argonne National Laboratory (Argonne, IL) have now created a chiral metamaterial-absorbing surface that has a large circular dichroism (CD) over the 1.3–1.8 μm spectral region. The chiral absorber could be useful for optical filters, thermal energy harvesting, optical communications, and chiral imaging.


A chiral optical metasurface selectively absorbs either left- or right-handed circularly polarized light; it could be useful in imagers and other optical systems.

Read more