Toggle light / dark theme

Mumbai: Prime Minister Narendra Modi’s call for a nine-minute blackout at 9 pm on April 5 has raised concerns for power grid managers as they are gearing up for ensuring grid stability during the period.

State-run Power System Operation Corporation (POSOCO), which is responsible for integrated operation of the grid, is working towards ensuring there is no pressure on the grid due to the possible grid collapse and resultant blackout throughout the country.

The Central Electricity Regulatory Authority (CERA) necessitates permissible range of the frequency band of 49.95−50.05 Hz for normal running of grid and if there is any discrepancy in the same with sudden increase or decrease in power flow, it might result into grid collapse.

O,.,o.


Physicists have conducted the most high-energy test of the speed of light yet, and found that it is still constant, everywhere in the Universe, even in gamma rays spewed out of sources such as exploding stars.

This means that, even at the highest energies we can detect, one of the pillars of Albert Einstein’s theory of special relativity still stands firm.

“How relativity behaves at very high energies has real consequences for the world around us,” said astrophysicist Pat Harding of Los Alamos National Laboratory in New Mexico.

The Army is looking at its Plasma Acoustic Shield System as a checkpoint defender, for now. But the original idea – and the long-term goal of the project – is to have it be the first baby step towards a portable, lethal laser weapon.

Pelt2The effort, by the U.S. Army’s Advanced Energy Armaments Systems Division and Stellar Photonics, has a lot in common with another military laser project: the Pulsed Energy Projectile being developed by Mission Systems for the Marines. But there are three key differences. The current PEP is a big (450 lb) chemical laser with a limited number of shots, whereas PASS is a small solid-state laser that just needs electricity. The PEP creates plasma by vaporising the outer layer surface it hits (such as your shirt), whereas PASS can create plasma in mid-air by focusing to a point. And PEP fires a single pulse, whereas PASS uses a double pulse which Stellar claim is far more efficient at creating a shockwave.

You can get some idea from the Small Business Initiative Proposal the company submitted in ‘04 for a “Man-portable Integrated Laser Assault Rifle”:

Using NASA’s Fermi and Swift spacecraft, astronomers have investigated SGR J1935+2154, the most recurring transient magnetar known to date. The new research sheds more light on the burst properties of this object. The study is detailed in a paper published March 23 on the arXiv pre-print repository.

Magnetars are with extremely , more than 1 quadrillion times stronger than the magnetic field of Earth. Decay of magnetic fields in magnetars powers the emission of high-energy electromagnetic radiation, for instance, in the form of X-rays or radio waves.

Discovered in 2014, SGR J1935+2154 has a spin period of 3.24 seconds, spin-down rate of 14.3 picoseconds/second, and a dipole-magnetic field with a strength at a level of approximately 220 trillion G, what confirms its nature. Since its detection, the source experienced more than 100 bursts, occurring almost annually.

Photo: EPNAC

TAMPA, Fla. — When Special Operations Command set out to create what would be popularly known as the ‘Iron Man suit’ seven years ago, developers assumed that the state-of-the-art in body armor would not improve much over the next few years.

That assumption led the command down a development path that would actually make the Tactical Assault Light Operator Suit resemble the comic book hero with heavy armor from head to toe and a power system and exoskeleton needed to help the operator move in the bulky suit.

Circa 2019


The development of new so-called metamaterials could lead to dramatic advances in military technology, particularly the ability to hide from sensors—even the human eye. Metamaterials, engineered composites designed to manipulate the electromagnetic spectrum, could lead to “invisible” tanks and armored vehicles, submarines undetectable by sonar, and weapons with improved seekers and guidance systems.

The big caveat though is that metamaterials are currently pretty difficult to manufacture and are still years away from full-scale production.

A new article in the October issue of the U.S. Naval Institute Proceedings outlines potential military applications for metamaterials. Metamaterials of plastic and metal and engineered in lattice-like patterns up to a billionths of a meter in scale. The result is a surface or material that can manipulate an object’s magnetic or electrical field in ways traditional building materials cannot. This allows them to alter how energy waves across the electromagnetic spectrum (visual light, radar, radio, acoustic waves, etc.) interact with them with some pretty stunning implications.

The amplitude mode is a ubiquitous collective excitation in condensed-matter systems with broken continuous symmetry. It is expected in antiferromagnets, short coherence length superconductors, charge density waves, and lattice Bose condensates. Its detection is a valuable test of the corresponding field theory, and its mass gap measures the proximity to a quantum critical point. However, since the amplitude mode can decay into low-energy Goldstone modes, its experimental visibility has been questioned. Here we show that the visibility depends on the symmetry of the measured susceptibility. The longitudinal susceptibility diverges at low frequency as Im χ σ σ ∼ ω − 1 (d = 2) or log (1 / | ω |) (d = 3), which can completely obscure the amplitude peak. In contrast, the scalar susceptibility is suppressed by four extra powers of frequency, exposing the amplitude peak throughout the ordered phase. We discuss experimental setups for measuring the scalar susceptibility. The conductivity of the O (2 ) theory (relativistic superfluid) is a scalar response and therefore exhibits suppressed absorption below the Higgs mass threshold, σ ∼ ω 2 d + 1. In layered, short coherence length superconductors, (relevant, e.g., to cuprates) this threshold is raised by the interlayer plasma frequency.

O.,o circa 2014.


Researchers in China are reporting that they’ve taken a big step towards creating a supersonic submarine. This technology, which could just as easily be applied to weaponized torpedoes as military or civilian submarines, could theoretically get from Shanghai to San Francisco — about 6,000 miles — in just 100 minutes. If all this doesn’t sound crazy enough, get this: This new advance by the Chinese is based on supercavitation, which was originally developed by the Soviets in the ’60s, during the Cold War.

As you may already know, it’s a lot harder for an object to move quickly through water than air. This is mostly due to increased drag. Without getting into the complexities of fluid dynamics, water is simply much thicker and more viscous than air — and as a result it requires a lot more energy for an object to push through it. You can experience the increased drag of water yourself next time you’re in a swimming pool: Raise your hand above your head, and then let it fall towards the water. (Or alternatively, if there are people sunbathing nearby, do a belly flop.)

Anyway, much like a small-engined car is ultimately limited by its ability to cut through wind resistance (drag), a submarine or torpedo needs insane amounts of power to achieve high velocity through water. This is why, even in 2014, most submarines and torpedoes can’t go much faster than 40 knots (~46 mph). Higher speeds are possible, but it requires so much power that it’s not really feasible (torpedoes only have so much fuel).