Toggle light / dark theme

Form Energy, the billionaire-backed start-up that claimed to have developed an innovative low-cost 150-hour battery, has finally revealed its battery chemistry after more than a year of high-profile secrecy.

The Boston-based company says its first commercial product is a “rechargeable iron-air battery capable of delivering electricity for 100 hours at system costs competitive with conventional power plants and at less than 1/10th the cost of lithium-ion”.

Earth’s core was formed very early in our planet’s 4.5 billion-year history, within the first 200 million years. Gravity pulled the heavier iron to the centre of the young planet, leaving the rocky, silicate minerals to make up the mantle and crust.

Earth’s formation captured a lot of heat within the planet. The loss of this heat, and heating by ongoing radioactive decay, have since driven our planet’s evolution. Heat loss in Earth’s interior drives the vigorous flow in the liquid iron outer core, which creates Earth’s magnetic field. Meanwhile, cooling within Earth’s deep interior helps power plate tectonics, which shape the surface of our planet.

As Earth cooled over time, the temperature at the centre of the planet eventually dropped below the melting point of iron at extreme pressures, and the inner core started to crystallise. Today, the inner core continues to grow at roughly 1mm in radius each year, which equates to the solidification of 8000 tonnes of molten iron every second. In billions of years, this cooling will eventually lead to the whole core becoming solid, leaving Earth without its protective magnetic field.

Electrons in metals try to behave like obedient motorists, but they end up more like bumper cars. They may be reckless drivers, but a new Cornell-led study confirms this chaos has a limit established by the laws of quantum mechanics.

The team’s paper, “T-Linear Resistivity From an Isotropic Planckian Scattering Rate,” written in collaboration with researchers led by Louis Taillefer from the University of Sherbrooke in Canada, published July 28 in Nature. The paper’s lead author is Gael Grissonnanche, a postdoctoral fellow with the Kavli Institute at Cornell for Nanoscale Science.

Metals carry electric current when electrons all move together in tandem. In most metals, such as the copper and gold used for electrical wiring, the electrons try to avoid each other and flow in unison. However, in the case of certain “strange” metals, this harmony is broken and electrons dissipate energy by bouncing off each other at the fastest rate possible. The laws of quantum mechanics essentially play the role of an electron traffic cop, dictating an on how often these collisions can occur. Scientists previously observed this limit on the collision rate, also known as the “Planckian limit,” but there is no concrete theory that explains why the limit should exist, nor was it known how electrons reach this limit in . So Ramshaw and his collaborators set out to carefully measure it.

Environmentalists say desalination decimates ocean life, costs too much money and energy. But as Western states face an epic drought, regulators appear ready to approve a desalination plant in Huntington Beach, California.

#California #Desalination #Drought.

About Channel:

WION-The World is One News, examines global issues with in-depth analysis. We provide much more than the news of the day. Our aim to empower people to explore their world. With our Global headquarters in New Delhi, we bring you news on the hour, by the hour. We deliver information that is not biased. We are journalists who are neutral to the core and non-partisan when it comes to the politics of the world. People are tired of biased reportage and we stand for a globalised united world. So for us the World is truly One.

Officials with battery maker Form Energy have announced the development of the Iron-Air 100-hour storage battery—a battery meant to store electricity created from renewable sources such as solar and wind. As part of their announcement, they note that their new battery is based on iron, not lithium, and thus is much less expensive to produce.

The team at Form Energy describe their as a multi-day storage system—one that can feed electricity to the grid for approximately 100 hours at a cost that is significantly lower than .

The basic idea behind the -air is that it takes in oxygen and then uses it to convert iron inside the battery to rust, later converting it back to iron again. Converting back and forth between iron and rust allows the energy that is stored in the battery to be stored longer than conventional batteries.

Boston startup Form Energy has secured $200 million Series D funding for the development of what is being called a breakthrough in energy storage. #solarenergy #solarpv #solar


Solar and wind power have variability in their productive hours, as multi-day weather events can impact output. Therefore, multi-day storage that is cost effective is important in grid reliability.

Boston startup Form Energy developed technology to address this need, revealing recently the chemistry behind their iron-air batteries. The company said its iron-air batteries can deliver renewables-sourced electricity for 100 hours at system costs competitive with conventional power plants. At full-scale production, Form Energy said the modules would deliver electricity at tenth the cost of lithium-ion batteries.

The iron-air battery is composed of cells filled with thousands of iron pellets that are exposed to air and create rust. The oxygen is then removed, reverting the rust to iron. Controlling this process allows the battery to be charged and discharged.

Dubai uses drones to electrically charge clouds, causing tortential rains in one of the driest nations on Earth. Until now, such experiments had been done succeessfully from the ground only.


Info — Viral — Fun.
#Real #Dubai #makes #its #own #RAIN #to #tackle #122F #heat: #Drones #blast #clouds #with #electrical #charge #to #produce #downpours.
#The #rain #is #formed #using #drone #technology #that #gives #clouds #an #electric #shock #to #‘cajole #them’ #into #clumping #together #and #producing #precipitation.
The #UAE #is #one #of #the #most #arid #countries #on #Earth #and #the #technique #helps #to #increase #its #meagre #annual #rainfall #Video #shows #it #is #working #with #monsoon-like #downpours #across #the #country.
Dubai makes its own RAIN to tackle 122F heat: Drones blast clouds with electrical charge to produce downpours.
The rain is formed using drone technology that gives clouds an electric shock to ‘cajole them’ into clumping together and producing precipitation.
The UAE is one of the most arid countries on Earth and the technique helps to increase its meagre annual rainfall.
Video shows it is working with monsoon-like downpours across the country.
******************************************
Donate & Support the needy people (JUSTGIVING).
https://www.justgiving.com/crowdfunding/infoviralfun-help-po…=x72BzB5ZX

Subscribe our Channel:

As renewable forms of power like wind and solar continue to gain prominence, there will be a need for creative solutions when it comes to storing energy from sources that are intermittent by nature. One potential solution is known as a molten salt battery, which offers advantages that lithium batteries do not, but have their share of kinks to iron out, too. Scientists at Sandia National Laboratories have come up with a new design that addresses a number of these shortcomings, and demonstrated a working molten salt battery that can be constructed far more cheaply, while storing more energy, than currently available versions.

Storing vast amounts of energy in a cheap and efficient manner is the name of the game when it comes to powering whole cities with renewable energy, and despite its many strengths, this is where expensive lithium battery technology falls short. Molten salt batteries shape as a more cost-effective solution, which use electrodes kept in a molten state with the help of high temperatures. This is something that the Sandia scientists have been working to change.

“We’ve been working to bring the operating temperature of molten sodium batteries down as low as physically possible,” says Leo Small, the lead researcher on the project. “There’s a whole cascading cost savings that comes along with lowering the battery temperature. You can use less expensive materials. The batteries need less insulation and the wiring that connects all the batteries can be a lot thinner.”