View insights.
The tech industry has more power than ever before. It’s time to leverage it to create real social, environmental, and political change. property= description.
View insights.
The tech industry has more power than ever before. It’s time to leverage it to create real social, environmental, and political change. property= description.
Circa 2018 unlimited energy using graphene.
University of Arkansas researchers have shown that the motion of graphene could supply an unlimited amount of clean energy. (Image credit: Pixabay)Graphene advancements are rolling out on a regular basis, with new developments in production 0, strength 0, and have even used it to create 3D printed objects. Researchers from the University of Arkansas have also utilized the material to create a source of potential unlimited clean energy, thanks to its flexibility.
Each potential flight will last more than a month.
With that out of the way, Artemis I should be able to fly in late August or early September.
— Energy Info
Media Contact: Jennifer Kalez
SALEM – A public partnership with the Oregon Department of Energy, Oregon Department of Land Conservation & Development, Oregon State University’s Institute for Natural Resources, and the U.S. Department of Defense has published new educational materials that will help local governments, Tribes, communities, policymakers, agencies, energy developers, and other stakeholders access important information and considerations for potential renewable energy in Oregon.
The Oregon Renewable Energy Siting Assessment (ORESA) project was funded through a $1.1 million U.S. Department of Defense (DoD) grant, with the goal of providing baseline data to support important conversations around potential energy and transmission development in the state.
Stir this silicon-based powder into water, and hydrogen will bubble out, ready for immediate use. Hong Kong company EPRO Advance Technology (EAT) says its Si+ powder offers an instant end to the difficulties of shipping and storing green energy.
This is the second powdered hydrogen advance we’ve learned about this week, designed to solve the same problems: transporting hydrogen is difficult, dangerous and expensive, whether the costs are for cryogenic cooling in a liquid hydrogen system, or for compression to around 700 times the normal sea-level air pressure.
But where Deakin University’s mechanochemical storage process takes hydrogen gas and traps it in a powder for easy, stable transport, releasing it only once the recyclable powder is heated, EAT’s silicon-based powder doesn’t require you to start off with any hydrogen at all – and getting the hydrogen back out is even easier.
New electrocatalysis electrodes have been created that are simpler and cheaper than conventional ones, and can substantially increase the efficiency of water splitting. Decorated with chiral molecules like helicenes, these devices double the activity of the oxygen evolution reaction, the bottleneck of the process, and improve its selectivity.
‘With electrocatalysis, we [can] use electrons from renewable sources [like solar and wind] to produce clean chemicals and fuels,’ explains Magalí Lingenfelder from the Max Planck–EPFL laboratory for molecular nanoscience and technology, in Switzerland, who led the study. In this work, her team focused on the oxygen evolution reaction. ‘It’s the bottleneck of water splitting,’ she says. ‘We wanted to increase its performance with cheap, simple solutions.’
Physics World
To get around this problem, Kanté and colleagues utilized photonic crystals. These are periodic structures, which, like electronic semiconductors, have “band gaps” – frequencies at which they are opaque. Like graphene in electronics, photonic crystals generally contain Dirac cones in their band structures. At the vertex of such a cone is the Dirac point, where the band gap closes.
Australian scientists say they’ve made a “eureka moment” breakthrough in gas separation and storage that could radically reduce energy use in the petrochemical industry, while making hydrogen much easier and safer to store and transport in a powder.
Nanotechnology researchers, based at Deakin University’s Institute for Frontier Materials, claim to have found a super-efficient way to mechanochemically trap and hold gases in powders, with potentially enormous and wide-ranging industrial implications.
Mechanochemistry is a relatively recently coined term, referring to chemical reactions that are triggered by mechanical forces as opposed to heat, light, or electric potential differences. In this case, the mechanical force is supplied by ball milling – a low-energy grinding process in which a cylinder containing steel balls is rotated such that the balls roll up the side, then drop back down again, crushing and rolling over the material inside.