Toggle light / dark theme

Engineers create an energy-storing supercapacitor from ancient materials

Two of humanity’s most ubiquitous historical materials, cement and carbon black (which resembles very fine charcoal), may form the basis for a novel, low-cost energy storage system, according to a new study. The technology could facilitate the use of renewable energy sources such as solar, wind, and tidal power by allowing energy networks to remain stable despite fluctuations in renewable energy supply.

The two materials, the researchers found, can be combined with water to make a supercapacitor—an alternative to batteries—that could provide storage of electrical .

As an example, the MIT researchers who developed the system say that their supercapacitor could eventually be incorporated into the concrete foundation of a house, where it could store a full day’s worth of energy while adding little (or no) to the cost of the foundation and still providing the needed structural strength. The researchers also envision a concrete roadway that could provide contactless recharging for as they travel over that road.

Healing Power of Light: Biomimetic Materials Pulsed With Low-Energy Blue Light Can Reshape Damaged Corneas

A new study reveals that biomimetic materials, when pulsed with low-energy blue light, can reshape damaged corneas, including increasing their thickness. The findings have the potential to affect millions of people.

A team of University of Ottawa researchers and their collaborators have uncovered the immense potential of an injectable biomaterial that is triggered by low-energy blue light pulses for immediate repair of the eye’s domed outer layer.

Following a design approach guided by biomimicry—innovation that takes inspiration from nature—the multidisciplinary researchers’ compelling results show that a novel light-activated material can be used to effectively reshape and thicken damaged corneal tissue, promoting healing and recovery.

News About Advances in Sodium-Ion and Solid-State Batteries

Sodium-ion (Na-ion) batteries and solid-state batteries have both been in the news recently. Why? Because the need for battery storage is growing rapidly as the global economy seeks carbon-based energy alternatives in pursuit of the goal to achieve net-zero emissions by the mid-century.

Na-ion Battery News

In April I wrote about BYD, a Chinese electric vehicle (EV) manufacturer, that is using sodium-ion (Na-ion) battery packs instead of lithium-ion (Li-ion) in some of its models. In its latest report, IDTechEx, out of Cambridge in the United Kingdom, states that although Na-ion batteries are not the answer to all battery-power applications, they do provide a complimentary addition to battery packs used not just in EVs but also for backup power within utilities and factories.

Scientists Invented an Entirely New Process For Refrigerating Things

Say hello to ionocaloric cooling. It’s a new way to lower temperatures with the potential to replace existing methods of chilling things with a process that is safer and better for the planet.

Typical refrigeration systems transport heat away from a space via a gas that cools as it expands some distance away. As effective as this process is, some of the choice gases we use are particularly unfriendly to the environment.

There is, however, more than one way a substance can be forced to absorb and shed heat energy.

Google-backed startup sets two world records in geothermal power

A Google-backed startup has successfully tested an enhanced geothermal system that could harness Earth’s inner heat to generate clean electricity anywhere, anytime — and they built it, ironically, with technology perfected by the oil industry.

The challenge: Geothermal power plants take advantage of the heat radiating from deep inside the Earth to create electricity. Usually, this is done by drilling wells down to natural underground reservoirs of hot water and using that steam to spin electric turbines.

This is a clean, reliable source of energy, but it is hard to scale. The need to build geothermal plants near existing hydrothermal reservoirs, which are relatively rare, limits its use to a handful of places — today, geothermal supplies just 0.4% of the US’s utility-scale electricity.

US launches $8.5 billion in rebates for home energy efficiency

WASHINGTON, July 27 (Reuters) — The Department of Energy said on Thursday it is accepting applications from states and territories for $8.5 billion in rebate programs for upgrades in U.S. homes that aim to lower energy bills and increase energy efficiency.

The rebates for items including insulation, heat pumps, and efficient appliances will be available to consumers after states and territories apply for and get funds from the department. The two rebate programs were funded by President Joe Biden’s Inflation Reduction Act that fellow Democrats in Congress passed last year without a single Republican vote.

The rebate programs will save up to $1 billion a year in energy costs and support about 50,000 jobs in construction, manufacturing and other businesses, the department said.

Eco-friendly proton battery offers affordable energy storage

RMIT University’s new proton battery could revolutionize energy storage, offering a safe, affordable, eco-friendly alternative to lithium-ion batteries.

The latest ‘proton battery’ developed by RMIT University holds the potential to revolutionize power supply for homes, vehicles, and devices without the disposal-related environmental challenges posed by lithium-ion batteries.

The battery works by using a carbon electrode to store hydrogen that has been separated from water, functioning like a hydrogen fuel cell to generate electricity.

Giant Swirling Plasma Waves Detected at The Edge of Jupiter’s Magnetosphere

Giant waves have been found swirling in the plasma at the boundary of Jupiter’s magnetosphere, scientists have found.

Data from Juno suggests the Jupiter probe regularly dips through these waves, invisible to the naked eye, as it orbits the giant planet. The discovery helps astronomers understand how mass and energy is transferred from the solar wind to the Jovian planetary environment.

Actually, such waves are not unknown in the Solar System. They’re known as Kelvin-Helmhotz waves, and they occur when there’s a difference in velocity at the boundary between two fluids. They can commonly be seen where wind blows across the surface of lakes and oceans, between currents in water, or even among bands of clouds in a planet’s atmosphere.

Going the distance for better wireless charging

A better way to wirelessly charge over long distances has been developed at Aalto University. Engineers have optimized the way antennas transmitting and receiving power interact with each other, making use of the phenomenon of “radiation suppression”. The result is a better theoretical understanding of wireless power transfer compared to the conventional inductive approach, a significant advancement in the field.

Charging over short distances, such as through induction pads, uses magnetic near fields to transfer power with high efficiency, but at longer distances the efficiency dramatically drops. New research shows that this high efficiency can be sustained over long distances by suppressing the radiation resistance of the loop antennas that are sending and receiving power. Previously, the same lab created an omnidirectional wireless charging system that allowed devices to be charged at any orientation. Now, they have extended that work with a new dynamic theory of wireless charging that looks more closely at both near (non-radiative) and far (radiative) distances and conditions. In particular, they show that high transfer efficiency, over 80 percent, can be achieved at distances approximately five times the size of the antenna, utilizing the optimal frequency within the hundred-megahertz range.

‘We wanted to balance effectively transferring power with the radiation loss that always happens over longer distances,’ says lead author Nam Ha-Van, a postdoctoral researcher at Aalto University. ‘It turns out that when the currents in the loop antennas have equal amplitudes and opposite phases, we can cancel the radiation loss, thus boosting efficiency.’