Toggle light / dark theme

This quickly turned out to be a record-setter. It was dubbed the Brightest Of All Time, or the “Boat,” as convenient shorthand among astronomers studying and observing the event. Not only did the Boat start out bright, it refused to fade away like other bursts.

We still do not fully know why the burst was so exceptionally bright, but our new study, published in Science Advances, provides an answer for its stubborn persistence.

The burst originated from a distance of 2.4 billion light years—relatively nearby for a GRB. But even when accounting for relative distance, the energy of the event and the radiation produced by its aftermath were off the charts. It is decidedly not normal for a cosmically distant event to deposit about a gigawatt of power into the Earth’s upper atmosphere.

The European Space Agency (ESA) launched the BepiColombo mission in 2018, and it is set to enter orbit around Mercury in 2025. In the meantime, it will be making several flybys of the planet, including a close approach today. That’s because the spacecraft’s route takes it on a series of increasingly close flybys that use the planet’s gravity to adjust its course each time.

In total, between its launch in 2020 and its arrival in Mercury orbit in 2025, the spacecraft will make one flyby of Earth, two of Venus, and six of Mercury. The Earth and Venus flybys are already complete, and today BepiColombo is making its third Mercury flyby, coming within 150 miles of the planet’s surface.

The maneuver will help to slow the spacecraft down so that it can eventually enter orbit. “As BepiColombo starts feeling Mercury’s gravitational pull, it will be traveling at 3.6 kilometers per second [2.2 miles per second] with respect to the planet. That’s just over half the speed it approached with during the previous two Mercury flybys,” explained ESA flight dynamics expert Frank Budnik in a statement. “And this is exactly what the point of such events is. Our spacecraft began with far too much energy because it launched from Earth and, like our planet, is orbiting the sun. To be captured by Mercury, we need to slow down, and we’re using the gravity of Earth, Venus and Mercury to do just that.”

A new high-performance metal alloy, called a superalloy, could help boost the efficiency of the turbines used in power plants and the aerospace and automotive industries.

Created using a 3D printer, the superalloy is composed of a blend of six elements that altogether form a material that’s both lighter and stronger than the standard materials used in conventional turbine machinery. The strong superalloy could help industries cut both costs and carbon emissions — if the approach can be successfully scaled up.

The challenge: In the world of materials science, the search for new metal alloys has been heating up in recent years. For over a century, we’ve depended on relatively simple alloys like steel, composed of 98% iron, to form the backbone of our manufacturing and construction industries. But today’s challenges demand more: alloys that can withstand higher temperatures and remain strong under stress, yet still be lightweight.

An international research group has engineered a new energy-generating device by combining piezoelectric composites with carbon fiber-reinforced polymer (CFRP), a commonly used material that is both light and strong. The new device transforms vibrations from the surrounding environment into electricity, providing an efficient and reliable means for self-powered sensors.

Details of the group’s research were published in the journal Nano Energy on June 13, 2023.

Energy harvesting involves converting energy from the environment into usable electrical energy and is something crucial for ensuring a .

A collaborative team led by researchers from City University of Hong Kong (CityU) recently invented an innovative method for synthesizing high-quality, semiconducting nanomesh at a lower temperature and production cost than conventional methods. The findings will help enable the large-scale production of nanomesh for next-generation electronics.

Nanomesh is a nano-scale material formed from a network of nanowires. For several decades, one-dimensional materials like nanowires made of crystalline inorganic materials have been widely explored as the main driver for emerging electronics, as they have features like mechanical flexibility, energy efficiency and optical transparency. However, the scalability, integrability and cost-effectiveness of nanowire semiconductors are insufficient, limiting their potential for large-area electronic and optoelectronic applications.

To overcome these shortcomings, a research team led by CityU scientists made a breakthrough, inventing a low-temperature vapor-phase growth method, which can achieve large-scale synthesis of semiconducting tellurium (Te) nanomesh for use in devices.

Fibonacci numbers are seen in the natural structures of various plants, such as the florets in sunflower heads, areoles on cacti stems, and scales in pine cones. [HackerBox] has developed a Fibonacci Spiral LED Badge to bring this natural phenomenon to your electronics.

To position each of the 64 addressable LEDs within the PCB layout, [HackerBox] computed the polar (r,θ) coordinates in a spreadsheet according to the Vogel model and then converted them to rectangular (x, y) coordinates. A little more math translates the points “off origin” into the center of the PCB space and scale them out to keep the first two 5 mm LEDs from overlapping. Finally, the LED coordinates were pasted into the KiCad PCB design file.

An RP2040 microcontroller controls the show, and a switch on the badge selects power between USB and three AA batteries and a DC/DC boost converter. The PCB also features two capacitive touch pads. [HackerBox] has published the KiCad files for the badge, and the CircuitPython firmware is shared with the project. If C/C++ is more your preference, the RP2040 MCU can also be programmed using the Arduino IDE.

Germanene – a two-dimensional, graphene-like form of the element germanium – can carry electricity along its edges with no resistance. This unusual behaviour is characteristic of materials known as topological insulators, and the researchers who observed it say the phenomenon could be used to make faster and more energy-efficient electronic devices.

Like graphene, germanene is an atomically thin material with a honeycomb structure. Like graphene, germanene’s electronic band structure contains a point at which the valence and conduction bands meet. At this meeting point, spin-orbit coupling creates a narrow gap between the bands within the material’s bulk, causing it to act as an insulator. Along the material’s edges, however, special topological states arise that bridge this gap and allow electrons to flow unhindered.

\r \r

Engineers at MIT say they have developed a new motor that could be used to electrify large aircraft, significantly reducing their carbon footprint with the help of innovative new electric propulsion technology.

The 1-megawatt motor has already undergone design and testing of its primary components, which the MIT team says helps demonstrate that its power generation is comparable to current small aircraft engines.

Every year, pollution from carbon dioxide in excess of 850 million tons is produced by the aviation industry. If left unmitigated, those levels could increase by as much as three times by mid-century, concerns that have prompted caps on the carbon dioxide emissions of international flights that have been instituted in recent years.