Toggle light / dark theme

In February, the CMS and MoEDAL collaborations at CERN signed an agreement to hand over to MoEDAL a section of the LHC beam pipe that was located inside CMS between 2008 and 2013. The delicate object, 6 metres long and made of beryllium, will now be sliced and fed into a highly precise magnetic sensors in order to allow MoEDAL to look for magnetic monopoles: hypothetical particles with only a single magnetic pole – north or south – unlike north-south dipoles we are familiar with.

Paul Dirac posited the existence of magnetic monopoles in 1931, and, although never observed, they could be produced in collisions within the LHC. They would not travel very far after being produced, binding with the beryllium nuclei of the beam pipe and remaining there awaiting discovery.

The MoEDAL collaboration will cut the beam pipe at a special facility at the Centre for Particle Physics at the University of Alberta in Canada and ship the pieces back across the Atlantic to ETH Zurich in Switzerland to look for electromagnetic anomalies in them. Many theories attempting to unify all of the known forces into a single force (so-called “Grand Unified Theories”) require the existence of monopoles and finding them could open the door to all-new physics.

Read more

Something about atoms has never added up. Fundamental particles called quarks get kind of sluggish once they’re caught up in crowds of protons and neutrons – and quite frankly, they shouldn’t.

For decades, physicists have hunted for clues on the quark’s tendency to slow down in larger atoms, but have come up empty-handed. But now, a closer look at old data has finally revealed a clue to explain this strange phenomenon.

A massive team of physicists known as the CLAS Collaboration (after the CEBAF Large Acceptance Spectrometer) recently ran through data gathered from previous experiments at the Jefferson Lab’s Continuous Electron Beam Accelerator Facility.

Read more

When two bodies are at different temperatures and not in direct contact with each other, it is generally assumed that thermal radiation (heat) will be transferred from the hotter body to the colder one. If the distance between the bodies is larger than the dominant thermal wavelength (about 10 micrometres at room temperature), there is a maximum heat-transfer rate, known as the black-body limit. Writing in Nature, Zhu et al. report that an electronic device called a photodiode can cool a solid that is colder than the photodiode when the two objects are in each other’s near field — that is, when they are separated by a distance much smaller than the thermal wavelength. This demonstration could have a tremendous impact on the fields of cooling and heat management.


It is well established that solid objects can be cooled by harnessing the properties of laser light. A laser-free technique that attains such cooling by tuning thermal radiation could have many practical applications. A method for near-field optical cooling.


A research team led by Professor Johann de Bono at the Institute of Cancer Research, London has successfully tested a new drug that has infiltrated different forms of cancer in an ongoing human trial [1].

The drug is called tisotumab vedotin (TV) and works like a ‘Trojan Horse’ by hiding a cancer-killing payload inside an antibody, which allows it to infiltrate the tumor and attack it from the inside.

The antibody seeks out a surface receptor on tumor cells known as ‘tissue factor’ (TF). TF is expressed by many tumor cells and contributes to a variety of pathological processes, including thrombosis, metastasis, tumor growth, and tumor angiogenesis. Once the antibody has located the TF receptor, it binds to it, and the cancer-killing payload is able to enter the tumor cell and destroy it from the inside.

Read more