Steerable arm helps save energy while capturing panoramic views.
A water-activated disposable paper battery is presented in a proof-of-principle study in Scientific Reports. The authors suggest that it could be used to power a wide range of low-power, single-use disposable electronics—such as smart labels for tracking objects, environmental sensors and medical diagnostic devices—and minimize their environmental impact.
The battery, devised by Gustav Nyström and colleagues, is made of at least one cell measuring one centimeter squared and consisting of three inks printed onto a rectangular strip of paper. Sodium chloride salt is dispersed throughout the strip of paper and one of its shorter ends has been dipped in wax. An ink containing graphite flakes, which acts as the positive end of the battery (cathode), is printed onto one of the flat sides of the paper while an ink containing zinc powder, which acts as the negative end of the battery (anode), is printed onto the reverse side of the paper. Additionally, an ink containing graphite flakes and carbon black is printed on both sides of the paper, on top of the other two inks. This ink connects the positive and negative ends of the battery to two wires, which are located at the wax-dipped end of the paper.
When a small amount of water is added, the salts within the paper dissolve and charged ions are released. These ions activate the battery by dispersing through the paper, resulting in zinc in the ink at the negative end of the battery releasing electrons. Attaching the wires to an electrical device closes the circuit so that electrons can be transferred from the negative end—via the graphite and carbon black-containing ink, wires and device—to the positive end (the graphite-containing ink) where they are transferred to oxygen in the surrounding air. These reactions generate an electrical current that can be used to power the device.
Researchers have found a way to use chaos to help develop digital fingerprints for electronic devices that may be unique enough to foil even the most sophisticated hackers.
Just how unique are these fingerprints? The researchers believe it would take longer than the lifetime of the universe to test for every possible combination available.
“In our system, chaos is very, very good,” said Daniel Gauthier, senior author of the study and professor of physics at The Ohio State University.
Gen-Z users of social media are flocking to new more visual sites like Twitch. TV, Discord, BeReal, and Poparazzi.
A new division of Science X Network, covers the latest engineering, electronics and technology advances.
Harnessing muons allows us to see through and inside objects to uncover their secrets.
A muon beam discovered a previously unknown room deep inside the Great Pyramid at Giza. Now DARPA wants to build muon beam imagers.
New discoveries from 50,000 year old ‘Diablo Canyon’ meteorite could have interesting potential applications for future electronics.
BEC was kind enough to share a parts list of everything used to create this project. It’s operated primarily by a Raspberry Pi Zero 2 W, with most components housed neatly inside an acrylic cylinder. It’s driven by a drone propeller alongside a couple of Pololu 2,130 DRV8833 Dual H-bridge motor drivers. The sensors include both a pressure sensor and a distance sensor, while a Lego Rechargeable 9V Battery Box supplies the power with the assistance of a Pololu 2,123 S7V8F5 5V voltage regulator.
The Raspberry Pi runs Raspberry Pi OS, while the code used to operate the submarine functions is handled using a custom Python script. BEC explains that Thonny was used to run the Python code, which is open-source and available for anyone to explore.
If you want to recreate this Raspberry Pi project for yourself or make something similar, check out the full blog post shared on the official Brick Experiment Channel blog. We also implore you to check out the video shared on YouTube for a demo of the submarine in action.
Circa 2020
By utilizing a process that Einstein famously called “spooky,” scientists have successfully caught “ghosts” on film for the first time using quantum cameras.
The “ghosts” captured on camera weren’t the kind you might first think; scientists didn’t discover the wandering lost souls of our ancestors. Rather, they were able to capture images of objects from photons that never actually encountered the objects pictured. The technology has been dubbed “ghost imaging,” reports National Geographic.
Normal cameras work by capturing light that bounces back from an object. That’s how optics are supposed to work. So how can it be possible to capture an image of an object from light if the light never bounced off the object? The answer in short: quantum entanglement.
An AI-powered camera system reduces wind turbine bird fatalities by stopping the turbine as soon as it spots birds. Read it here.