Menu

Blog

Archive for the ‘electronics’ category: Page 31

Jun 29, 2016

This Tiny Camera Can Be Injected Into Your Body

Posted by in categories: electronics, physics

Get great shots of those hard to reach places.

Read more

Jun 27, 2016

Huge Cache of Ancient Helium Discovered in Africa’s Rift Valley

Posted by in categories: biotech/medical, electronics

A “huge” stash of helium discovered in East Africa could ease a decades-long shortage of the rare and valuable gas.

Researchers in the United Kingdom and Norway say the newly discovered helium gas field, found in the East African Rift Valley region of Tanzania, has the potential to ease a critical global shortage of helium, a gas that is vital to many high-tech applications, such as the magnetic resonance imaging (MRI) scanners used in many hospitals.

The researchers say the discovery is the result of a new approach to searching for helium that combines prospecting methods from the oil industry with scientific research that reveals the role of volcanic heat in the production of pockets of helium gas. [Elementary, My Dear: 8 Elements You Never Heard Of].

Continue reading “Huge Cache of Ancient Helium Discovered in Africa’s Rift Valley” »

Jun 26, 2016

Electronics on the Fly

Posted by in categories: 3D printing, electronics

Laura speaks with Simon Fried, Co-founder of Nano Dimension about how the Israeli 3D printed electronics company is changing the role of PCBs.

Read more

Jun 13, 2016

Neutrons reveal unexpected magnetism in rare-earth alloy

Posted by in categories: electronics, materials

More news on ORNL’s efforts around magnetic excitations in the metallic compound ytterbium-platinum-lead (Yb2Pt2Pb).


Researchers at the Department of Energy’s Oak Ridge National Laboratory and their collaborators used neutron scattering to uncover magnetic excitations in the metallic compound ytterbium-platinum-lead (Yb2Pt2Pb). Surprisingly, this three-dimensional material exhibits magnetic properties that one would conventionally expect if the connectivity between magnetic ions was only one-dimensional. Their research is discussed in a paper published in the journal Science.

An electron can theoretically be understood as a bound state of three quasiparticles, which collectively carry its identity: spin, charge and orbit. It has been known that the spinon, the entity that carries information about electron spin, can “separate” itself from the others under certain conditions in one-dimensional chains of magnetic ions such as copper (Cu2+) in an insulating host. Now, the new study reveals that spinons are also present in metallic Yb2Pt2Pb.

Continue reading “Neutrons reveal unexpected magnetism in rare-earth alloy” »

Jun 9, 2016

Scientific camera from Photometrics features high quantum efficiency

Posted by in categories: electronics, quantum physics

Featuring backside-illuminated sensor technology providing 95% quantum efficiency, the Prime 95B from 2016 Innovators Awards silver-level honoree Photometrics is reportedly three times more sensitive than the current generation of sCMOS cameras. The camera features a GSENSE400BSI-TVISB scientific CMOS (sCMOS) sensor from Gpixel Inc., which is a 1.44 MPixel sensor with a 11 µm square pixel size that can achieve a frame rate of 41 fps in 16-bit and 82 fps in 12-bit. The Prime 95B, according to Photometrics, is optimized for low-light microscopy and life sciences imaging applications because of its ability to collect nearly all available light, and maximize the signal-to-noise ratio of the experiment while minimizing cellular photo damage. Additionally, the camera features forced air or liquid cooling options, as well as a PCIe and USB 3.0 interfaces.

Read more

Jun 6, 2016

Future Military Technology — US Military Secret Weapons Technology (Full Documentary)

Posted by in categories: electronics, government, military

America Future Secrets Military Weapons #Mind Blow (Full Documentary)

MOST FEARED Weapons Technology for US Military (Message to world) 2016.

Continue reading “Future Military Technology — US Military Secret Weapons Technology (Full Documentary)” »

Jun 6, 2016

Tiny lasers on silicon means big things for electronics

Posted by in categories: computing, electronics, nanotechnology, quantum physics, solar power, sustainability

Silicon forms the basis of everything from solar cells to the integrated circuits at the heart of our modern electronic gadgets. However the laser, one of the most ubiquitous of all electronic devices today, has long been one component unable to be successfully replicated in this material. Now researchers have found a way to create microscopically-small lasers directly from silicon, unlocking the possibilities of direct integration of photonics on silicon and taking a significant step towards light-based computers.

Whilst there has been a range of microminiature lasers incorporated directly into silicon over the years, including melding germanium-tin lasers with a silicon substrate and using gallium-arsenide (GaAs) to grow laser nanowires, these methods have involved compromise. With the new method, though, an international team of researchers has integrated sub-wavelength cavities, the basic components of their minuscule lasers, directly onto the silicon itself.

To help achieve this, a team of collaborating scientists from Hong Kong University of Science and Technology, the University of California, Santa Barbara, Sandia National Laboratories and Harvard University, first had to find a way to refine silicon crystal lattices so that their inherent defects were reduced significantly enough to match the smooth properties found in GaAs substrate lasers. They did this by etching nano-patterns directly onto the silicon to confine the defects and ensure the necessary quantum confinement of electrons within quantum dots grown on this template.

Continue reading “Tiny lasers on silicon means big things for electronics” »

Jun 6, 2016

Living circuits can handle complex computing

Posted by in categories: biotech/medical, computing, electronics

Gene-based circuits are about to get decidedly more sophisticated. MIT scientists have developed a method for integrating both analog and digital computing into those circuits, turning living cells into complex computers. The centerpiece is a threshold sensor whose gene expression flips DNA, converting analog chemical data into binary output — basically, complex data can trigger simple responses that match the language of regular computers.

The practical applications are huge. Along with general-purpose computing, you could have advanced sensors that trigger different kinds of chemical production depending on levels for other chemicals. You could produce insulin when there’s too much glucose, for instance, or deliver different kinds of cancer therapy. And this isn’t just talk. Clinical trials for a simple gene circuit (which will treat gut diseases) are starting within a year, so you could see these organic machines in action before too long.

Read more

Jun 4, 2016

A Camera Lens Breakthrough Could See Smartphones Outperforming DSLRs

Posted by in categories: electronics, mobile phones

If you’ve ever held a high-quality camera lens, the first thing you notice is the weight. Thanks to layers and layers of thick glass hunks inside, they end up being very heavy. However, thanks to research being done at Harvard on something called metalenses, one day those mgiant glass-filled lenses might be obsolete.

The curved surfaces on a glass lens focus incoming light onto a camera’s digital sensor. The more precise (and expensive) the lens is, the better the image it will produce.

Metalenses work in a similar way, but they’re not made of precision-ground glass. Instead, a layer of transparent quartz is completely covered in a layer of tiny towers made from titanium dioxide. When arranged in specific patterns, those complex tower arrays can focus light exactly like a glass lens does. Except that these tiny metalenses end up being thinner than a human hair, and weigh almost nothing.

Continue reading “A Camera Lens Breakthrough Could See Smartphones Outperforming DSLRs” »

Jun 2, 2016

Tiny lasers enable next-gen microprocessors to run faster, less power-hungry

Posted by in categories: electronics, energy, nanotechnology

More energy efficient, high performance microprocessors on the way.


Abstract: Tiny high-performance lasers grown directly on silicon wafers solve a decades-old semiconductor industry challenge that, until now, has held back the integration of photonics with electronics on the silicon platform,

A group of scientists from Hong Kong University of Science and Technology; the University of California, Santa Barbara; Sandia National Laboratories and Harvard University were able to fabricate tiny lasers directly on silicon — a huge breakthrough for the semiconductor industry and well beyond.

Continue reading “Tiny lasers enable next-gen microprocessors to run faster, less power-hungry” »

Page 31 of 61First2829303132333435Last