Toggle light / dark theme

A Soap Bubble Becomes a Laser

Using a soap bubble, researchers have created a laser that could act as a sensitive sensor for environmental parameters including atmospheric pressure.

Soap bubbles are known for their attention-grabbing effect on toddlers, and now researchers have shown that these objects have another dazzling use—generating color-tunable laser light [1]. They demonstrated that a dye dissolved in the soap solution of such a bubble can amplify light circulating in the spherical shell and produce laser light. This light is visible as a glowing ring around the bubble. Such “bubble lasers” could act as precision sensors for measuring atmospheric pressure or for detecting changes in an electric field.

The allure of bubbles comes in large part from their interaction with light. As soap bubbles dance through the air, they sparkle like glitter, shifting hues as they move. This phenomenon, known as iridescence, comes from the interference of light waves within a bubble’s soapy shell.

Qualcomm unveils cutting-edge XR chipset to compete with Apple Vision Pro

Chip likely designed for Samsung, Google mixed reality headset.


To delve into the technical specifications, Apple’s Vision Pro boasts an impressive resolution of 11.5 million pixels per eye, more than a 4K TV for each eye, with a total resolution of 23 million pixels.

In comparison, the Quest 3 features a total resolution of 4.6 million pixels per eye, slightly surpassing 2k resolution.

The new Snapdragon XR2 chip supporting 4.3k per eye, translating to a total resolution of 34 million pixels at 90 fps, means a potential alignment of the chip with screens akin to Apple’s Vision Pro.

Looking At CRISPR Therapeutics’s Recent Unusual Options Activity

Deep-pocketed investors have adopted a bearish approach towards CRISPR Therapeutics CRSP, and it’s something market players shouldn’t ignore. Our tracking of public options records at Benzinga unveiled this significant move today. The identity of these investors remains unknown, but such a substantial move in CRSP usually suggests something big is about to happen.

We gleaned this information from our observations today when Benzinga’s options scanner highlighted 11 extraordinary options activities for CRISPR Therapeutics. This level of activity is out of the ordinary.

The general mood among these heavyweight investors is divided, with 45% leaning bullish and 54% bearish. Among these notable options, 2 are puts, totaling $98,000, and 9 are calls, amounting to $744,659.

Unexpected Discovery About the Body’s Temperature Sensors Could Lead To Better Pain Relievers

The ability to accurately detect heat and pain is critical to human survival. However, the molecular mechanisms behind how our bodies identify these dangers have long been a mystery to scientists.

Now, University at Buffalo researchers have unraveled the complex biological phenomena that drive these critical functions. Their research, recently published in the Proceedings of the National Academy of Sciences, has uncovered a previously unknown and completely unexpected “suicidal” reaction in ion channel receptors that explains the complicated mechanisms that underlie sensitivity to temperature and pain.

The research could be applied to the development of more effective pain relievers.

Evaluating Sampling Methods for Finding Life Beyond Earth

Can amino acids, the key building blocks of life, survive high-speed impacts from a spacecraft orbiting another world? This is what a recent study published in The Proceedings of the National Academy of Sciences (PNAS) hopes to find out as a team of researchers at the University of California San Diego (UCSD) conducted laboratory experiments to see if biosignature molecules identified in the plumes of Saturn’s icy moon, Enceladus, by NASA’s Cassini spacecraft could survive hypervelocity impacts experienced by Cassini passing through the plumes. This study is a first-of-its-kind to investigate how extraterrestrial plumes can be analyzed and holds the potential to help researchers develop more efficient techniques for finding extraterrestrial life beyond Earth.

For the study, the researchers used the custom-built Hypervelocity Ice Grain Impact Mass Spectrometer to investigate if ice grains being shot out of Enceladus’s plumes at 800 mph (400m/s) could have survived after striking Cassinis’ detectors, which were estimated between 4 to 10.9 mi/s (6.5 to 17.5 km/s). For the tests, the team shot water through a needle at a high voltage, which caused it to break down into droplets followed by them entering a vacuum where they freeze, and the team used the spectrometer to measure the results of the grains impacting a microchannel plate detector. The results demonstrated that amino acids within ice grains could survive up to impacts of 2.6 miles per second (4.2 km/s), which the team says could serve as a baseline for sampling such plumes.

“To get an idea of what kind of life may be possible in the solar system, you want to know there hasn’t been a lot of molecular fragmentation in the sampled ice grains, so you can get that fingerprint of whatever it is that makes it a self-contained life form,” said Dr. Robert Continetti, who is a Distinguished Professor of Chemistry and Biochemistry at UCSD and a co-author on the study. “Our work shows that this is possible with the ice plumes of Enceladus.”