Toggle light / dark theme

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts, Legal Standing, Safety Awareness, Economic Viability, Theoretical-Empirical Relationships, and Technological Feasibility.

In a previous post on Technological Feasibility I had stated that a quick and dirty model shows that we could achieve velocity of light c by 2151 or the late 2150s. See table below.

Year Velocity (m/s) % of c
2200 8,419,759,324 2808.5%
2152 314,296,410 104.8%
2150 274,057,112 91.4%
2125 49,443,793 16.5%
2118 30,610,299 10.2%
2111 18,950,618 6.3%
2100 8,920,362 3.0%
2075 1,609,360 0.5%
2050 290,351 0.1%
2025 52,384 0.0%

That is, at the current rate of technological innovation we could as a civilization reach light speed in about 140 years. More importantly we could not even reach anywhere near that within the next 100 years. Our capability would be 6.3% of c.

The Lorentz-Fitzgerald transformation informs us light speed would require an infinite amount of energy (i.e. more than there is in the Universe!), thereby highlighting the weaknesses in these types of technological forecasting methods. But these models still serve a purpose. They provide some guidance as to what is possible and when. The operative word is guidance.

Rephrasing is required. Is the technological light speed horizon of the 2150s too far out? If you are as impatient as I am the answer is ‘yes’. It would not be in the spirit of the Kline Directive to accept a 2150s horizon. 2150s is for people with no imagination, people who have resigned to the inevitable snail’s progress of physics. Further, we now know the inevitable impossibility using our contemporary physics because of the 5 major errors.

Completing the Interstellar Challenge Matrix (ICH) gives:

PDF version available here.

What are we left with? We have to find new directions, new models, new mathematical constructions, that address all 5 errors. And in the spirit of the Kline Directive, there needs to be a better method of sifting through academic papers “ … to provide reasonability in guidance and correctness in answers to our questions in the sciences …”

What do we do for starters? Here are my initial recommendations are:

1. The physics community has to refocus on mathematical construction hypotheses.

2. More experimental physicist leading combined teams of experimental and theoretical physicist.

3. Prioritize research funding by Engineering Feasible Theories, 100-Year Theories, and only then Millennium Theories.

I started this series of blog posts in order to achieve interstellar travel sooner rather than later, but we as a community are heading in the wrong direction. It won’t work to build bigger carriages. It won’t work add more horses, as some would suggest. That would be like flogging a dead horse. We have to do something radically different. That is why the Kline Directive matters.

I have made the assumption that technological feasibility is a necessary step. Yes it is, given our lack of technological capability to reach the stars in a realistic and finite time frame. Technology feasibility very quickly leads back to the next question of commercial viability, the second step.

Future feasible technologies will iterate between technological feasibility and commercial viability until we can reach the stars in a manner we don’t have to ask the question, whom do we select to leave Earth?

Until then we are not ready!

Previous post in the Kline Directive series.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

The Kline Directive: Theoretical-Empirical Relationship (Part 4)

Posted in business, cosmology, defense, economics, education, engineering, nuclear weapons, particle physics, philosophy, physics, policy, scientific freedom, spaceTagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 11 Comments on The Kline Directive: Theoretical-Empirical Relationship (Part 4)

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts, Legal Standing, Safety Awareness, Economic Viability, Theoretical-Empirical Relationship, & Technological Feasibility.

In this post I have updated the Interstellar Challenge Matrix (ICM) to guide us through the issues so that we can arrive at interstellar travel sooner, rather than later:

Interstellar Challenge Matrix (Partial Matrix)

Propulsion Mechanism Relatively Safe? Theoretical-Empirical Relationship?
Conventional Fuel Rockets: Yes, but susceptible to human error. Known. Theoretical foundations are based on Engineering Feasible Theories, and have been evolving since Robert Goddard invented the first liquid-fueled rocket in 1926.
Antimatter Propulsion: No. Extensive gamma ray production (Carl Sagan). Issue is how does one protect the Earth? Capable of an End of Humanity (EOH) event. Dependent on Millennium Theories. John Eades states in no uncertain terms that antimatter is impossible to handle and create.
Atomic Bomb Pulse Detonation: No, because (Project Orion) one needs to be able to manage between 300,000 and 30,000,000 atomic bombs per trip. Known and based on Engineering Feasible Theories.
Time Travel: Do Not Know. Depends on how safely exotic matter can be contained. Dependent on a Millennium Theory. Exotic matter hypotheses are untested. No experimental evidence to show that Nature allows for a breakdown in causality.
String / Quantum Foam Based Propulsion: Do Not Know. Depends on how safely exotic matter can be contained. Dependent on a Millennium Theory. String theories have not been experimentally verified. Exotic matter hypotheses are untested. Existence of Quantum Foam now suspect (Robert Nemiroff).
Small Black Hole Propulsion: No. Capable of an End Of Humanity (EOH) event Don’t know if small black holes really do exist in Nature. Their theoretical basis should be considered a Millennium Theory.

It is quite obvious that the major impediments to interstellar travel are the Millennium Theories. Let us review. Richard Feynman (Nobel Prize 1965) & Sheldon Lee Glashow (Nobel Prize 1979) have criticized string theory for not providing novel experimental predictions at accessible energy scales, but other theoretical physicists (Stephen Hawking, Edward Witten, Juan Maldacena and Leonard Susskind) believe that string theory is a step towards the correct fundamental description of nature. The Wikipedia article String Theory gives a good overview, and notes other critics and criticisms of string theories. In What is String Theory? Alberto Güijosa explains why string theories have come to dominate theoretical physics. It is about forces, and especially about unifying gravity with the other three forces.

Note, strings expand when their energy increases but the experimental evidence aka Lorentz-Fitzgerald transformations tell us that everything contracts with velocity i.e. as energy is increased.

In my opinion, the heady rush to a theory of everything is misguided, because there is at least one question that physics has not answered that is more fundamental than strings and particles. What is probability and how is it implemented in Nature?

Probabilities are more fundamental than particles as particles exhibit non-linear spatial probabilistic behavior. So how can one build a theory of everything on a complex structure (particles), if it cannot explain something substantially more fundamental (probabilities) than this complex structure? The logic defies me.

We can ask more fundamental questions. Is this probability really a Gaussian function? Experimental data suggests otherwise, a Var-Gamma distribution. Why is the force experienced by an electron moving in a magnetic field, orthogonal to both the electron velocity and the magnetic field? Contemporary electromagnetism just says it is vector cross product, i.e. it is just that way. The cross product is a variation of saying it has to be a Left Hand Rule or a Right Hand Rule. But why?

Is mass really the source of a gravitational field? Could it not be due to quark interaction? Can we device experiments that can distinguish between the two? Why do photons exhibit both wave and particle behavior? What is momentum, and why is it conserved? Why is mass and energy equivalent?

Can theoretical physicists construct theories without using the laws of conservation of mass-energy and momentum? That would be a real test for a theory of everything!

In my research into gravity modification I found that the massless formula for gravitational acceleration, g=τc2, works for gravity, electromagnetism and mechanical forces. Yes, a unification of gravity and electromagnetism. And this formula has been tested and verified with experimental data. Further that a force field is a Non Inertia (Ni) field, and is present where ever there is a spatial gradient in time dilations or velocities. This is very different from the Standard Model which requires that forces are transmitted by the exchange of virtual particles.

So if there is an alternative model that has united gravity and electromagnetism, what does that say for both string theories and the Standard Model? I raise these questions because they are opportunities to kick start research in a different direction. I answered two of these questions in my book. In the spirit of the Kline Directive can we use these questions to explore what others have not, to seek what others will not, to change what others dare not?

That is why I’m confident that we will have real working gravity modification technologies by 2020.

In concluding this section we need to figure out funding rules to ensure that Engineering Feasible and 100-Year Theories get first priority. That is the only way we are going to be able to refocus our physics community to achieve interstellar travel sooner rather than later.

Previous post in the Kline Directive series.

Next post in the Kline Directive series.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts:

1. Legal Standing. 2. Safety Awareness. 3. Economic Viability. 4. Theoretical-Empirical Relationship. 5. Technological Feasibility.

In Part 1 of this post I will explore Theoretical-Empirical Relationship. Not theoretical relationships, not empirical relationships but theoretical-empirical relationships. To do this let us remind ourselves what the late Prof. Morris Kline was getting at in his book Mathematics: The Loss of Certainty, that mathematics has become so sophisticated and so very successful that it can now be used to prove anything and everything, and therefore, the loss of certainty that mathematics will provide reasonability in guidance and correctness in answers to our questions in the sciences.

History of science shows that all three giants of science of their times, Robert Boyle, Isaac Newton & Christiaan Huygens believed that light traveled in aether medium, but by the end of the 19th century there was enough experimental evidence to show aether could not be a valid concept. The primary experiment that changed our understanding of aether was the Michelson–Morley experiment of 1887, which once and for all proved that aether did not have the correct properties as the medium in which light travels.

Only after these experimental results were published did, a then unknown Albert Einstein, invent the Special Theory of Relativity (SRT) in 1905. The important fact to take note here is that Einstein did not invent SRT out of thin air, like many non-scientists and scientists, today believe. He invented SRT by examining the experimental data to put forward a hypothesis or concept described in mathematical form, why the velocity of light was constant in every direction independent of the direction of relative motion.

But he also had clues from others, namely George Francis FitzGerald (1889) and Hendrik Antoon Lorentz (1892) who postulated length contraction to explain negative outcome of the Michelson-Morley experiment and to rescue the ‘stationary aether’ hypothesis. Today their work is named the Lorentz-Fitzgerald transformation.

So Einstein did not invent the Special Theory of Relativity (SRT) out of thin air, there was a body of knowledge and hypotheses already in the literature. What Einstein did do was to pull all this together in a consistent and uniform manner that led to further correct predictions of how the physics of the Universe works.

(Note: I know my history of science in certain fields of endeavor, and therefore use Wikipedia a lot, not as a primary reference, but as a starting point for the reader to take off for his/her own research.)

Previous post in the Kline Directive series.

Next post in the Kline Directive series.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

The Kline Directive: Economic Viability

Posted in business, complex systems, defense, economics, education, engineering, finance, military, nuclear weapons, philosophy, physics, policy, scientific freedom, space, sustainabilityTagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 11 Comments on The Kline Directive: Economic Viability

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts:

1. Legal Standing. 2. Safety Awareness. 3. Economic Viability. 4. Theoretical-Empirical Relationship. 5. Technological Feasibility.

In this post I will explore Economic Viability. I have proposed the Interstellar Challenge Matrix (ICM) to guide us through the issues so that we can arrive at interstellar travel sooner, rather than later. Let us review the costs estimates of the various star drives just to reach the velocity of 0.1c, as detailed in previous blog posts:

Interstellar Challenge Matrix (Partial Matrix)

Propulsion Mechanism Legal? Costs Estimates
Conventional Fuel Rockets: Yes Greater than US$1.19E+14
Antimatter Propulsion: Do Not Know. Between US$1.25E+20 and US$6.25E+21
Atomic Bomb Pulse Detonation: Illegal. This technology was illegal as of 1963 per Partial Test Ban Treaty Between $2.6E12 and $25.6E12 . These are Project Orion original costs converted back to 2012 dollar. Requires anywhere between 300,000 and 30,000,000 bombs!!
Time Travel: Do Not Know. Requires Exotic Matter, therefore greater than antimatter propulsion costs of US$1.25E+20
Quantum Foam Based Propulsion: Do Not Know. Requires Exotic Matter, therefore greater than antimatter propulsion costs of US$1.25E+20
Small Black Hole Propulsion: Most Probably Illegal in the Future Using CERN to estimate. At least US$9E+9 per annual budget. CERN was founded 58 years ago in 1954. Therefore a guestimate of the total expenditure required to reach its current technological standing is US$1.4E11.

Note Atomic Bomb numbers were updated on 10/18/2012 after Robert Steinhaus commented that costs estimates “are excessively high and unrealistic”. I researched the topic and found Project Orion details the costs, of $2.6E12 to $25.6E12, which are worse than my estimates.

These costs are humongous. The Everly Brothers said it the best.

Let’s step back and ask ourselves the question, is this the tool kit we have to achieve interstellar travel? Are we serious? Is this why DARPA — the organization that funds many strange projects — said it will take more than a 100 years? Are we not interested in doing something sooner? What happened to the spirit of the Kline Directive?

From a space exploration perspective economic viability is a strange criterion. It is not physics, neither is it engineering, and until recently, the space exploration community has been government funded to the point where realistic cost accountability is nonexistent.

Don’t get me wrong. This is not about agreeing to a payment scheme and providing the services as contracted. Government contractors have learned to do that very well. It is about standing on your own two feet, on a purely technology driven commercial basis. This is not an accounting problem, and accountants and CFOs cannot solve this. They would have no idea where to start. This is a physics and engineering problem that shows up as an economic viability problem that only physicists and engineers can solve.

The physics, materials, technology and manufacturing capability has evolved so much that companies like Planetary Resources, SpaceX, Orbital Sciences Corp, Virgin Galactic, and the Ad Astra Rocket Company are changing this economic viability equation. This is the spirit of the Kline Directive, to seek out what others would not.

So I ask the question, whom among you physicist and engineers would like to be engaged is this type of endeavor?

But first, let us learn a lesson from history to figure out what it takes. Take for example DARPA funding of the Gallium Arsenide. “One of DARPA’s lesser known accomplishments, semiconductor gallium arsenide received a push from a $600-million computer research program in the mid-1980s. Although more costly than silicon, the material has become central to wireless communications chips in everything from cellphones to satellites, thanks to its high electron mobility, which lets it work at higher frequencies.”

In the 1990s Gallium Arsenide semiconductors were so expensive that “silicon wafers could be considered free”. But before you jump in and say that is where current interstellar propulsion theories are, you need to note one more important factor.

The Gallium Arsenide technology had a parallel commercially proven technology in place, the silicon semiconductor technology. None of our interstellar propulsion technology ideas have anything comparable to a commercially successful parallel technology. (I forgot conventional rockets. Really?) A guesstimate, in today’s dollars, of what it would cost to develop interstellar travel propulsion given that we already had a parallel commercially proven technology, would be $1 billion, and DARPA would be the first in line to attempt this.

Given our theoretical physics and our current technological feasibility, this cost analysis would suggest that we require about 10 major technological innovations, each building on the other, before interstellar travel becomes feasible.

That is a very big step. Almost like reaching out to eternity. No wonder Prof Adam Franks in his July 24, 2012 New York Times Op-Ed, Alone in the Void, wrote “Short of a scientific miracle of the kind that has never occurred, our future history for millenniums will be played out on Earth”.

Therefore, we need to communicate to the theoretical physics community that they need get off the Theory of Everything locomotive and refocus on propulsion physics. In a later blog posting I will complete the Interstellar Challenge Matrix (ICM). Please use it to converse with your physicist colleagues and friends about the need to focus on propulsion physics.

In the spirit of the Kline Directive — bold, explore, seek & change — can we identify the 10 major technological innovations? Wouldn’t that keep you awake at night at the possibility of new unthinkable inventions that will take man where no man has gone before?

PS. I was going to name the Interstellar Challenge Matrix (ICM), the Feasibility Matrix for Interstellar Travel (FMIT), then I realized that it would not catch on at MIT, and decided to stay with ICM.

Previous post in the Kline Directive series.

Next post in the Kline Directive series.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts:

1. Legal Standing. 2. Safety Awareness. 3. Economic Viability. 4. Theoretical-Empirical Relationship. 5. Technological Feasibility.

In this post I will explore Legal Standing.

With respect to space exploration, the first person I know of who pushed the limits of the law is Mr. Gregory W. Nemitz of The Eros Project. He started this project in March 2000. As a US taxpayer, Nemitz made the claim that he is the Owner of Asteroid 433, Eros, and published his claim about 11 months prior to NASA landing its “NEAR Shoemaker” spacecraft on this asteroid.

Within a few days of the NEAR Shoemaker spacecraft landing on his property, Nemitz sent an invoice for twenty dollars to NASA, for parking and storage fees at twenty cents per year, payable in one century installments.

Citing faulty interpretation of the Outer Space Treaty of 1967, NASA refused to pay the fees required by Nemitz. This issue then proceeded to court. Unfortunately, on April 26, 2004 U.S. District Court Judge Howard McKibben Ordered the case to be dismissed.

The moral of this real story is that you don’t have to be a high flying physicist, planetary geologist, astrobiologist or propulsion engineer to advocate &/or sponsor interstellar travel initiatives. You could even be a retired coastguard, and miraculous things might happen.

Congratulations Gregory Nemitz for trying something nobody else dared to do in the spirit of the Kline Directive.

Planetary Resources, Inc. whose founders are Eric Anderson and Peter H. Diamandis could possibly provide the second challenge to space law. How? The “treaty also states that the exploration of outer space shall be done to benefit all countries” … you see where I’m going with asteroid mining?

I’m not an attorney, but these are things we need to watch for. In the light of Planetary Resources objectives and activities Nemitz’s parking fee case poses some dilemmas. First, if the US Government will not stand up for its citizens or entities, what is to stop other governments from imposing taxes for mining what is “to benefit all countries”?

Unfriendly governments will be quick to realize that they have nothing to lose and everything to gain by pursuing such claims in international courts, and through UN organizations.

Second, the judicial system could not intervene because, were it to agree, then everyone would have a claim to outer space property without investing in their claim. That would be like saying John Doe, during the gold rush of the 1840s & 1850s, could claim half of California but had no intention to exercise his mining rights.

Everything hinges on what one could consider an ‘investing’. The Homestead Acts of 1862 to 1909 would be a useful analog. These Acts gave an applicant ownership at no cost of farmland called a “homestead” to anyone who had never taken up arms against the U.S. government, had to be 21 or older or the head of a family, live on the land for five years, and show evidence of having made improvements.

So what would an interplanetary equivalent be? You, the reader could propose your version. Here is a first pass at it. There are two parts:

1. Asteroids: An applicant may claim ownership to an asteroid, provided the claimant had never taken up arms against the U.S. government, and can exercise the claim by placing a token of claimant’s ownership on the claimed asteroid within 1,000 Earth days or equivalent, of submitting the claim. Upon placing the token on the asteroid, the claimant is then given 2,000 Earth days or equivalent, to show evidence of having developed the commercial value of the asteroid.

Failure to comply will cause the claim to be null & void and return the asteroid to the public for future applicants to claim the property.

2. Planetary Resources: An applicant may claim ownership of up to 25 km2 of planetary surface, and the mineral & water rights within the area, provided the claimant had never taken up arms against the U.S. government, and can exercise the claim by placing a token of claimant’s ownership on the claimed planetary surface within 1,000 Earth days or equivalent, of submitting the claim. Upon placing the token on the planetary surface, the claimant is then given 2,000 Earth days or equivalent, to show evidence of having developed the commercial value of this planetary surface.

Failure to comply will cause the claim to be null & void and return the planetary surface to the public for future applicants to claim the property.

In the case of gaseous planets like Jupiter, the claim shall be limited to 25 km3 at specified altitudes, longitudes, and latitutes.

Planetary Resources, Inc. I wish you the best.

Previous post in the Kline Directive series.

Next post in the Kline Directive series.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

Science and engineering are hard to do. If it wasn’t we would have a space bridge from here to the Moon by now. If you don’t have the real world practical experience doing either science or engineering you won’t understand this, or the effort and resources companies like Boeing, Lockheed, SpaceX, Orbital Sciences Corp, Scaled Composites, Virgin Galactic, and the Ad Astra Rocket Company have put into their innovations and products to get to where they are, today.

If we are to achieve interstellar travel, we have to be bold.
We have to explore what others have not.
We have to seek what others will not.
We have to change what others dare not.

The dictionary definition of a directive is, an instruction or order, tending to direct or directing, and indicating direction.

Dictionary of Military and Associated Terms, US Department of Defense 2005, provides three similar meanings,

1. A military communication in which policy is established or a specific action is ordered.
2. A plan issued with a view to putting it into effect when so directed, or in the event that a stated contingency arises.
3. Broadly speaking, any communication which initiates or governs action, conduct, or procedure.

In honor of the late Prof. Morris Kline who authored Mathematics: The Loss of Certainty, I have named what we need to do to ensure the success of our endeavors for interstellar space travel, as the Kline Directive.

His book could be summarized into a single statement, that mathematics has become so sophisticated and so very successful that it can now be used to prove anything and everything, and therefore, the loss of certainty that mathematics will provide reasonability in guidance and correctness in answers to our questions in the sciences.

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not.

To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts:

1. Legal Standing.
2. Safety Awareness.
3. Economic Viability.
4. Theoretical-Empirical Relationship.
5. Technological Feasibility.

I will explore each of these 5 fronts on how we can push the envelop to reach the stars sooner rather than later.

Next post in the Kline Directive series

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

Scientific discovery in the natural sciences has proceeded at an exponential rate and we are now seeing the social sciences experience a profound transformation as a consequence of computational social science. How far computational social science will reinvent social science is the big question. Some of the themes I’ve explored in my own work have been about the relationship between political philosophy and science and whether the computational sciences can help formulate new conceptions of societal organisation. Many in the field seem to think so.

These three things—a biological hurricane, computational social science, and the rediscovery of experimentation—are going to change the social sciences in the 21st century. With that change will come, in my judgment, a variety of discoveries and opportunities that offer tremendous prospect for improving the human condition. It’s one thing to say that the way in which we study our object of inquiry, namely humans, is undergoing profound change, as I think it is. The social sciences are indeed changing. But the next question is: is the object of inquiry also undergoing profound change? It’s not just how we study it that’s changing, which it is. The question is: is the thing itself, our humanity, also changing? (Nicholas A. Christakis, A NEW KIND OF SOCIAL SCIENCE FOR THE 21st CENTURY)

A biological understanding of human nature combined with new insights derived from computational social science can potentially revolutionise political, social and economic systems. Consequently there are profound philosophical implications. Secular political philosophy specifically emerged out of the European experience of Church and monarchical rule, and socialism emerged out of the experience of industrialisation and capitalist ideology. Therefore is it possible that a new political philosophy could emerge out of the reinvention of the social sciences?

One question that fascinated me in the last two years is, can we ever use data to control systems? Could we go as far as, not only describe and quantify and mathematically formulate and perhaps predict the behavior of a system, but could you use this knowledge to be able to control a complex system, to control a social system, to control an economic system? (Albert-lászló Barabási, THINKING IN NETWORK TERMS)

With Big Data we can now begin to actually look at the details of social interaction and how those play out, and are no longer limited to averages like market indices or election results. This is an astounding change. The ability to see the details of the market, of political revolutions, and to be able to predict and control them is definitely a case of Promethean fire — it could be used for good or for ill, and so Big data brings us to interesting times. We’re going to end up reinventing what it means to have a human society. (Alex (Sandy) Pentland, REINVENTING SOCIETY IN THE WAKE OF BIG DATA)

Edge has an excellent discussion exploring computational social science and how it could transform humanity. One of the exciting challenges I see will be to integrate the exponential discoveries in the natural sciences with the social sciences, and to truly build a civilisation upon rationality.

iPhone 5 Hyper-Anticipation: It Didn’t Mean What You Think it Meant (AGAIN)

iPhone 5 Hyper-Anticipation: It Didn’t Mean What You Think it Meant (AGAIN)

Okay, now — bear with me on this — and check it out:
For now and for better or worse, The United States is home to a plurality of the world’s techiest technology, investment capital, productive creativity, and cutting edge research. As such, hiccups in those technology-driven economies of real currency and ideas can ripple around the entire planet.

Amid considerable anti-intellectualism and various public & private R&D funding issues, American tech leadership and innovation is stuttering and sputtering and might be in danger of faltering. While we’re not at that point just yet, there is an interesting harbinger with a peculiar manifestation: New iPhone Anticipation Loopiness. As I said, bear with me.


_______________

This is a repost & redux from an October 5, 2011 Anthrobotic.com piece — published a day before the suspected-to-be-iPhone 5 was released as the iPhone 4S. While the fanboy drool and mainstream gee-whiz was considerably dialed down this time around (in part due to lots of leaking), the sentiment of this piece remains relevant and largely unchanged. Now, we did have the Nuclear-Powered Science Robot Dune Buggy with Lasers (AKA the rover Curiosity) this year, and that was very big, but on a societal level we still have a sad hole in our technology heart.

Of course any hand-wringing about the underlying catalyst for weird iPhone fervor is a so-called first-world luxury, but to that I say “Shhhh, Trickle Down Technonomics©® is real.“
_______________

The Great Want
I was half-seriously saying to my friend Jason last night that waiting for the iPhone 5’s release is like waiting for Christmas morning when we were 10. Except that the reveal of this present will be more like “Here’s what we got you, but you can’t actually have it for another two to four weeks.“ That part’s kinda cruel. He’s at 3G, I’m at 3GS — upgrade is ferociously justified (and cheap here in Japan). So, like lots and lots of Americans and other people around the world, we’ve been not so patiently waiting for Tuesday morning; we have also been part of this peculiar intensity.

Troubling Telecommunication Technolust
Now, is there any other product, across any and all areas of industry, for which a pending release has been the subject of such anticipation, such broad media coverage, and so much conjecture? And how is it that the key marketing strategy for a company’s flagship revenue source is their absolute refusal to talk about the product until after its launch? Do we consumers really want the new hotness that badly? How are all these strings being pulled? How can so many otherwise reasonable adults have so much longing for this device?

Even if one’s not an iPhone user and has no plans to convert, chances are one is at least curious about what Apple’s got. I mean, be honest, even if you’ve got only a very general interest in technology, you’re going to be paying attention to the announcement. And if you’re not actively following the story, you’ll hear about it passively — it will be everywhere for a few days or a week or so.

So… what’s this all about?
It’s just a pretty new phone, right?

No.
We know that a phone hasn’t been just a phone for several years now — a lot of us hardly use the telephone part of the device at all. And, they’ve become, well, you know — smart. This guy (Mike Elgan) and this woman (Amber Case) have developed theories suggesting that smartphones are actually highly personalized digital information prosthetics, and we users are already cybernetic organisms (Anthrobotic.com nods in agreement). Smartphones connect us as individuals to the vast stream of human communication; they non-invasively enable the RAM & ROM of all recorded human history into the palm of our hands, and devices’ elegantly rapid penetration into everyday life has been… (drama pause) profound. Ask organizers and participants in the Arab Spring. Ask villagers in developing countries who lack roads and electricity — but do have respectable data plans. And ask again, if you like.

Mobile phones have become much more than the name implies, and as a practical tool, the iPhone 5 in particular will be an exciting addition to comms and gaming and entertainment blah blah blah. As per usual, Apple will probably introduce hardware and software features that will shape mobile technology on a global scale — that’s what Apple does.

And all that’s awesome whoo-hoo way to go, but still, it’s #5, just the latest iteration.
Not really THAT big of a deal, so why the hell do we care so much?

Deep-Seated Social-Psychological Phenomena Available in Red, White, & Blue
It seems to me that shallow, mindless American consumerism, certainly a well-documented species, is not the primary force driving our overblown iPhone 5 excitement and anticipation and media coverage and hyperbole. You’d think so, but…

Listen for the thud — here drops a cheesy armchaired macro-diagnosis:
Subconsciously — in my country — the rabid anticipation for the iPhone 5 is actually about hope, inasmuch as it’s about the American Dream. In a way.
Or, more accurately, the corpsification thereof. In a way.

And that is because we the people have almost nothing else to be excited about.
(except: The Nuclear-Powered Science Robot Dune Buggy with Lasers)

We of the Uninspiring Slump
Over at Anthrobotic.com, fundamental to my silly-ass take on tech is the primary tenet of the 51%+ Positive Technological Utopianism Movement (that I totally just invented), which is:

Technology is the fundamental precursor to civilization and is therefore the most powerful social force in the universe, yo. Srsly.

Humanity is in the midst of a rapid upswing in almost all facets of human development. Things are just getting better, all across the board. BUT, there are still some crappy little downward notches in the larger upward curve. We’re in one of those — the American Dream has lost coherence - and we are desperate for something big, something to inspire and unite us, something more than, oh I don’t know, the impotent & mentally retarded discourse of America’s pathetic political charade, for example.

A leap too far? Overgeneralizing? Pandering to the Dumb? Just dumb?
Well, I suppose it’s possible that the population of the U.S. who find themselves anywhere on the mildly-curious-to-completely-rapt scale of interest in the iPhone 5’s pending release are a poor sample from which to gauge the attitude of a nation. But for that to be the case it would have to be in another universe with different rules. Because A: There are around 310 million people in the U.S., and about 100 million are smartphone users, and I’d guess (and read survey data reporting) that a strong percentage of them are pretty interested in learning about or buying the iPhone 5 — so if you think such a massive population block that is engaged and ready to take action on an issue provides a poor statistical sample, well then, you can’t count. And because B: those 100 million people have nothing else to give a shit about.

The iPhone 5, Insidiously Alluring in a Vacuum!
So what the hell am I saying here? Well, The iPhone is an incredible device that quite literally represents a truckload of previously impossible mobile functionality. Think about it — just 4.5 years ago it didn’t exist, and the App Store (which has been copied by, ummm… everyone) is barely over 3 years old. It’s a beautifully designed tool, elegantly powerful in so many ways. But, it’s no revelation, it’s just a very precedented technological creation of late 2011; it’s a consumer product — and in another year, we’ll want the next version, and the next, and so on.

Physical artifacts are usually outshined by big ideas, but the thing is this: while we’re lousy with the former, we’re fresh out of the latter.

Projecting
Now this isn’t about dorks like myself and those inhabiting this higher ranks of sciencyness and geekdom — we’ve got plenty to excite us. But everyday humans in the U.S., where traditional notions of culture are diffuse and diluted, tend to unite around ideas and ideals — and very often those drive and/or are a product of scientific or technological advancement of some kind — and sometimes, that can inspire others around the world. The mass-production of automobiles and human flight inspired notions of the freedom of movement, TV launched and inspired vast visual creativity, and following the Soviet advances, the Apollo missions united the nation, gave new appreciation for the Pale Blue Dot, ROI-ed ten$ of billion$, and inspired the rest of the world to continue pushing into the frontier of space. And, American computer technology, much of it pioneered by Apple, jumpstarted what will probably be the single largest paradigm shift in the history of our species. It’s become natural for us to see great positivity and opportunity in our technological achievements.

Americans fundamentally appreciate and embrace innovation, and we want look to the future with hope, longing for new ideas and new developments that create new economies and new possibilities. But for the time being now, our American Dream is stuck in neutral and we have no common rallying point. Our nation’s greatest point of unity and excitement and anticipation is for the release of another mobile telecommunications device — the best thing we have to look forward to is Tim Cook, 10:00am, PST.

Well That’s not so Uplifting Now, is it?
We desperately want good news, we desperately want a new great project stabbing toward some awesome goal — and there’s just… nothing there. The economy is crap, there is no great leader to inspire us, and there is no great undertaking for the betterment of all humankind. That’s where the iPhone 5 anticipation energy comes from. Americans want what is new, we want to push forward, we want profound ideas to inspire us now and for decades to come — it’s in the fabric of the nation. If we were about to launch a manned mission to Mars, or a Manhattan Project-style energy initiative, or building hotels on the moon, this announcement would be but a spark.

Myself and millions will soon have a state of the art, super cool new phone. And the Dream will stay on break. Such is life. But it’s not gone, and do check back later — we might have space tourism and near-infinite fusion energy pretty soon!

It’s Tuesday night here in Japan — going to sleep.
I’ll check the morning news straight away, and I’ll be excited about the phone I will own in a few short weeks. It’ll be awesome, I’m sure. And the world’s most valuable company will get more valuable, I’m sure.

Aside from the next-next iPhone and a new figurehead, will another year bring anything new? Not so sure.

(The Nuclear-Powered Science Robot Dune Buggy with Lasers came close, didn’t it?)

_______________

Thanks for reading!

-Reno at Anthrobotic.com

_______________

Whilst I was checking up on C.O.R.E. (Cumbrians Opposed to a Radioactive Environment) this weekend, I read of latest plans to ship plutonium MOX fuel assemblies from Sellafield to the small German port of Nordenham near Bremerhaven on the NDA’s (Nuclear Decommissioning Authority) ageing ship Atlantic Osprey.

The Atlantic Osprey, built in 1986, is a roll-on roll-off ferry purchased third hand by British Nuclear Fuels plc (BNFL) in 2001 and converted to carry radioactive materials. It is the only ship not to be custom-built of the UK’s designated nuclear cargo ships, and so is not double-hulled, and has only a single engine, among other short-comings.

According to CORE it has a chequered history as a nuclear carrier that includes an engine-room fire and breakdowns at sea, and equivalent sister ships have historically been retired at or before a standard 25 years of service. Whilst the ship is soon to finally brought to the scrapyard, it is due to be replaced by a 25-year old ship Oceanic Pintail recently saved from the scrap yard itself — and one would get the impression that the Nuclear Decommissioning Authority are cutting corners on safety to save on expenditure.

CORE spokesman Martin Forwood has pointed out that INS (International Nuclear Services — a subsidiary of the NDA) appears hell-bent on shipping this MOX fuel to Germany on a third-hand ship with second class safety and kept afloat on first class INS PR alone” and on learning about the current state of affairs, one would be inclined to agree.

“The shipment of such highly dangerous nuclear material should never be entrusted to a ship not only past its sell-by date but also described recently in the press as a rust-bucket. Given its known safety and security weaknesses which now include the apparent lack of the vital sonardyne sunken vessel location system, using the Atlantic Osprey for the German MOX is a prime example of the nuclear industry putting business before safety. Common sense dictates that these plans should be abandoned immediately”.

Although the CORE concern is quite specific in this case, it raises the broader question — on what are acceptable safety standards for the nuclear industry as a whole — and to what extent such businesses cut corners for financial reasons — at the expense of public safety.

Learn about C.O.R.E: http://corecumbria.co.uk/