Toggle light / dark theme

The Posthuman Divine: When Robots Can Be Enlightened

This special issue of ‘Sophia’ aims to reflect upon future evolutions of religions and their related narratives and imaginaries from a critical and generative understanding of our ancient sources. Bodies are locations of creative power and symbolic proliferation. Cyborgian, transhuman, and posthuman embodiments are going to generate visions of the divine in tune with such an epistemic shift, by addressing questions such as: can God be represented as a cyborg? Could robots and avatars be prophets? Is internet a suitable setting for a posthuman theophany? This special issue articulates within the frame of a relational ontological perspective, according to which the notion of the divine evolves, as much as human and non-human persons do. In this evolutionary scenario, the representation of the divine realm may shift from era to era, adapting to new natural-cultural formations. This special issue argues that the posthuman paradigm shift will be followed by a symbolic turn in religious imaginaries as well.

In a posthuman future, human and non-human beings, plants, and minerals will most likely co-exist with advanced artificial intelligence, sentient robots, and conscious humanoids. As futurist Ray Kurzweil affirms: ‘The introduction of technology is not merely the private affair of one of the Earth’s innumerable species. It is a pivotal event in the history of the planet’ ( 1999, p. 35). Religions will need to re-think their theological approaches in order to allow for different types of subjectivities and embodied entities to partake in the religious quest. Religions themselves are material as well as symbolic networks, actualized through words, prayers, metaphors, rhythms, images, and symbols, among many other expressions. The physical, the virtual, and the symbolic are inextricably intertwined. In the era of the cyborg, God is not only human; in the era of the post-human, humans are not the only prophets.

Sarcos robo-suit turning Delta crews into superhuman man-machines

Sarcos sprinkled the flavor of the future on last year’s CES show when it revealed the latest evolution of its robotic exoskeleton technology, the Guardian XO. At this year’s CES, the Salt Lake City-based robotics specialist and Delta Airlines announced pilot trials, with Delta employees set to be among the first workers to suit up in the battery-powered, force-multiplying wearable robots, enjoying superhuman strength and endurance without body wear and tear.

Few things make us want to trade a cushy gig of rambling away about gadgets semi-coherently on the Web for a life of physical labor like the Guardian XO. A full-body robotic suit that turns its wearer into something of a near-cyborg superhero, the XO looks straight out of a dystopian sci-fi thriller and brings the capabilities to match. It bears its own substantial weight, along with 200 additional pounds (91 kg) of payload, letting the wearer lift heavy objects for hours without physical strain or fatigue.

Sarcos says the Guardian XO takes under 30 seconds to put on or take off, responds in milliseconds to the operator’s movements, and amplifies his or her strength by up to 20 times. It offers eight hours of battery power, and a hot-swapping battery system allows users to extend that operational time. All in all, it’s a highly impressive machine meant to help humans complete obligatory lifting tasks that would be difficult or impossible to tackle with more conventional lifting machinery.

Carboncopies: Here’s a weblink to the research paper:

Your brain is the orchestra that plays the symphony of your mental experience and your awareness, and that experience is your window on existence and on the universe. Our aim is to preserve, restore, and even improve your mental experience beyond the limits of biology. With dedication, scientific advances within our lifetimes may allow us to record the unique arrangement and responses of neurons and synapses that encode your memories, their active behavior, and ultimately to restore all of that in a neural prosthesis that seamlessly repairs a brain function, or a complete artificial brain. Some of this is still reminiscent of science fiction, but each challenge is well on its way to being a tractable technology problem supported by scientific evidence and understanding.

How To Innovate In Biomedicine With Limited Resources For Big Results

STEM Bootstrapping in Bio-Medicine! — On this recent ideaXme (https://radioideaxme.com/) episode, I was joined by 24 year old Malawian inventor, Sanga Marcarios Kanthema, founder and CEO of two companies, Dolphin Health Innovations and QubiX Robotics, who’s bringing health tech innovations to one of the world’s poorest countries — #Ideaxme #Malawi #Robotics #EKG #Stethoscope #Prosthetics #MobileHealth #SmartPhones #Telemedicine #MedicalDrones #Health #Wellness #Longevity #IraPastor #Bioquark #Regenerage


Ira Pastor, ideaXme exponential health ambassador and founder of Bioquark, interviews Sanga Kanthema, 24 year old electronics specialist and founder and CEO of two Malawi-based companies, Dolphin Health Innovations and QubiX Robotics.

Ira Pastor Comments:

On today’s show we are going to continue our “virtual global road trip” and our discussions about STEM (Science, Technology, Engineering and Mathematics) initiatives, and about ways they are disrupting the status quo. In doing so, we are heading back to the continent of Africa.

But first, we are going to start with some disconcerting statistics on the healthcare front.

500,000-year-old Fossilized Brain Has Totally Changed Our Minds

Fossils of just about everything have been unearthed, from ancient feathers to entire dinosaur skeletons preserved in opal, but there is one thing nobody thought could survive hundreds of thousands of years—until now.

Brain matter from a Cambrian arthropod that crawled around 500,000 years ago has proven many paleontologists wrong about brain decay being inevitable. Previous research suggests that no matter what it may be protected by, soft neural matter will break down long before fossilization can even start. Minds have suddenly been changed. Alalcomenaeus may have been a tiny creature, but its exoskeleton was tough enough to ward off decomposition.

This ultracool smart glove for astronauts is like a remote control for robots on the Moon and Mars

What if astronauts could take a spacecraft to Mars or some other alien planet and, without ever flying through a toxic atmosphere or landing on an inhospitable surface, control drones and rovers to unearth things that would be otherwise impossible to get up close to?

This is the thinking behind the Ntention smart glove. Ntention is an ambitious futuretech startup that was the brainchild of Norwegian University of Science and Technology (NTNU) students who wanted to push the limits of space exploration. They designed this glove, equipped with sensors, as a human-machine interface that lets you mind-control a robot with hand gestures. Now NASA’s Haughton Mars project (HMP) has field tested the glove and found it to be many levels of awesome.

Would you want immortal life as a cyborg?

Transhumanism can mean uploading one’s mind into cyberspace. But some transhumanists hope to slowly morph into “immortal cyborgs” with endlessly replaceable parts.

Five years ago, we were told, we were all turning into cyborgs:

Did you recently welcome a child into the world? Congratulations! An upstanding responsible parent such as yourself is surely doing all you can to prepare your little one for all the pitfalls life has in store. However, thanks to technology, children born in 2014 may face a far different set of issues than you ever had to. And we’re not talking about simply learning to master a new generation of digital doohickeys, we’re talking about living in a world in which the very definition of “human” becomes blurred.

Engineers reveal ‘invincible’ autonomous robot insect that can’t be flattened

A team in Switzerland has created a soft robotic insect that can withstand a multitude of hits from a flyswatter.

A new soft robotic insect could one day form part of a swarm designed to perform a number of different tasks. A team from the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland developed the insect and showed it is incredibly durable, even when being battered by a flyswatter.

Publishing its findings to Science Robotics, the team said the insect – called DEAnsect – is propelled 3cm per second by artificial muscles. Two versions were produced: one tethered with ultra-thin wires, the other being untethered and autonomous weighing less than 1g, including its battery and components.