Toggle light / dark theme

Rid Paris of its Nazi problem together with a friend in Wolfenstein: Youngblood, the first co-op game in the series’s history. Set in a twisted 1980, step into the power armor of the “Terror Twins,” Jess and Soph Blazkowicz, on a mission to find your missing father BJ.

Clean up the Parisian streets with an arsenal of weapons and abilities in online co-op or with an AI companion. Wolfenstein: Youngblood is available July 26, 2019 for PC, PlayStation 4, Xbox One, and Nintendo Switch.

Pre-order the Deluxe Edition and invite a friend to play the full game FREE with the Buddy Pass! The Deluxe Edition includes the Cyborg Skin Pack to customize your power armor and weapons. As a bonus, players who pre-order will also receive the Legacy Pack, iconic skins inspired by BJ’s earlier adventures!

Follow us for the latest Wolfenstein: Youngblood news:
https://www.Facebook.com/Wolfenstein

https://www.Instagram.com/Wolfenstein

Roboticists at the California Institute of Technology launched an initiative called RoAMS, which uses the latest research in robotic walking to create a new kind of medical exoskeleton. With the ability to move dynamically, using neurocontrol interfaces, these exoskeletons allow users to balance and walk without the crutches. Learn more in the latest IEEE Spectrum article! https://ieeexplore.ieee.org/document/8946313 #RoAMS #exoskeletons


Bipedal robots have long struggled to walk as humans do-balancing on two legs and moving with that almost-but-not-quite falling forward motion that most of us have mastered by the time we’re a year or two old. It’s taken decades of work, but robots are starting to get comfortable with walking, putting them in a position to help people in need.

In a trial, the scientists were capable of using electrical jolts from microelectronic controllers to make jellyfish swim not only faster but also more efficiently, according to a paper published in Science Advances today.

“We’ve shown that they’re capable of moving much faster than they normally do, without an undue cost on their metabolism,” said co-author and Stanford bioengineering PhD candidate Nicole Xu, in a statement.

“This reveals that jellyfish possess an untapped ability for faster, more efficient swimming,” Xu added. “They just don’t usually have a reason to do so.”

The world’s first completely robotic heart may end the need for transplants from dead humans in as few as 10 years, the hybrid heart made of soft artificial muscles and sensors is hoped to eventually end the need for human transplants.

The hybrid robotic heart is under development and could clear NHS heart transplant waiting lists and save many lives. It is the first hybrid heart made from soft artificial muscles and sensors which are coated in human tissues that are grown in a laboratory.

There are plans partnered with the British Heart Foundation to transplant it into the first person in 2028; the hope is that this hybrid robotic heart will save thousands of lives who would normally have died while waiting for a human organ donor on global waiting lists.

Sometimes, being human involves tragedy: unexpected accidents can alter a person’s future, permanently changing how they need to approach their daily lives. Those with traumatic brain injuries suffer long-term mental and physical challenges, such as trouble with their working memory span, which can play a significant role in their education and longevity. However, if used properly, transhuman aids such as prosthetic limbs can provide solutions to human challenges.

Transhumanism, in a nutshell, is the idea that people can use technology to overcome biological limitations. Just as how we use rational means to improve our life experiences and the world around us, we can use such means to improve ourselves as organisms. It is simply a concept, not a tangible characterization of some futuristic cyborg.

There is reasonable fear that using such technologies would be tampering with nature. This is true. However, whether something is good or bad cannot be decided simply by asking whether or not it is natural. Plenty of natural things are horrible, such as diseases and parasites, where our moral interest is to intervene and improve these conditions. The question to ask is not whether the technology is natural, but rather, what are the various possible consequences that would arise from it, both desirable and undesirable, and the likelihood of each. People who are concerned that our species will stray too far away from what it means to be a ‘natural human’ forget how far we have already evolved as a species.

By Rohit Talwar, Steve Wells, Alexandra Whittington, and Maria Romero

As artificial intelligence (AI) revolutionises work as we know it, how will the software testing and security industry be impacted?

The robots are coming: “Lock up your knowledge and protect your job at all costs!” The apocalyptic warnings are starting to flow of how artificial intelligence (AI) and robotics combined with other disruptive technologies could eliminate the need for humans in the workplace. Equally sceptical voices are rubbishing the idea that anything drastic will happen, citing previous industrial revolutions as proof that new jobs will emerge to fill any gaps created by the automation of existing ones. In practice, no one really knows how quickly AI might eliminate jobs or what the employment needs will be of the future businesses and industries that have not yet been born.

But the future is not

Human skin is a fascinating multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with external physical environment through numerous receptors interconnected with the nervous system. Scientists have been trying to transfer these features to artificial skin for a long time, aiming at robotic applications.

Robotic systems heavily rely on electronic and magnetic field sensing functionalities required for positioning and orientation in space. Much research has been devoted to implementation of these functionalities in a flexible, compliant form. Recent advancements in flexible sensors and organic electronics have provided important prerequisites. These devices can operate on soft and elastic surfaces, whereas sensors perceive various physical properties and transmit them via readout circuits.

To closely replicate natural skin, it is necessary to interconnect a large number of individual sensors. This challenging task became a major obstacle in realizing electronic skin. First demonstrations were based on an array of individual sensors addressed separately, which unavoidably resulted in a tremendous number of electronic connections. In order to reduce the necessary wiring, important technology had to be developed—namely, complex electronic circuits, current sources and switches had to be combined with individual magnetic sensors to achieve fully integrated devices.

In response, a number of Japanese tech companies are building exoskeleton suits to give the elderly a leg — or arm — up. One such company, Innophys, developed a backpack-like suit that can be ‘charged’ by squeezing a hand pump 30 times to fill pressurized air-powered “muscles.”

The suit can allow people to lift up to 55 pounds, costs the equivalent of about $1,300.

“One client is a family-owned company which makes and sells pickled radish and uses heavy weights in the process of production,” Innophys spokesperson Daigo Orihara told New Scientist. “The father is in his 70s and was supposed to retire but is still working with our muscle suit.”

How can we tackle gender imbalance in the personalities of AI learning tools?

The Gendering of AI

The expected growth in use of artificial intelligence (AI) in learning applications is raising concerns about both the potential gendering of these tools and the risk that they will display the inherent biases of their developers. Why the concern? Well, to make it easier for us to integrate AI tools and chatbots into our lives, designers often give them human attributes. For example, applications and robots are often given a personality and gender. Unfortunately, in many cases, gender stereotypes are being perpetuated. The type of roles robots are designed to perform usually reflect gendered over generalizations of feminine or masculine attributes.

Feminine personalities in AI tools such as