Toggle light / dark theme

The feeling that we belong to something much larger and deeper than ourselves has long been a common human experience. Palaeontologist and Jesuit priest Teilhard de Chardin wrote about “a noosphere” of cognitive realisation evolving towards an “Omega point” of divine planetary spiritualisation. But it is hard to envisage that ever occurring. It is easier to envisage that we belong in an evolving intelligent power that has entered a momentous posthuman dimension though artificial intelligence.

Some futurists believe we are on the way to realising a posthuman world in which we will live on as cyborgs, or in some new embodiment of intelligent power that will absorb and supersede human intelligence. It is no longer fanciful to foresee a future in which we will have everyday interactions with androids that are powered by artificial general intelligence. They will look, move, and seem to think and respond like a human person, be skilled in simulating emotional responses realistically, and greatly out-perform us in mental activities and manual tasks. It may be we will regard them only as tools or mechanical assistants. But from their expression of human-like behaviours we may become attached to them, even to the extent of according them rights. Their design will have to ensure they don’t carry any threat, but will we be able to trust fully that this will remain the case given their technical superiority? And how far can we trust that the military, malicious groups, and rogue states won’t develop androids trained to kill people and destroy property? We know only too well about our human propensity for violent conflict.

It would be ironic if, to gain more power and control over the world, we used our human intelligence to create AI systems and devices which, for all the benefits they bring, end up managing our lives to our detriment, or even controlling us. And irony, as Greek dramatists were well aware, is often a component of fate.

Recent technological advancements have opened invaluable opportunities for assisting people who are experiencing impairments or disabilities. For instance, they have enabled the creation of tools to support physical rehabilitation, to practice social skills, and to provide daily assistance with specific tasks.

Researchers at Meta AI recently developed a promising and non-invasive method to decode speech from a person’s brain activity, which could allow people who are unable to speak to relay their thoughts via a computer interface. Their proposed method, presented in Nature Machine Intelligence, merges the use of an imaging technique and machine learning.

“After a stroke, or a brain disease, many patients lose their ability to speak,” Jean Remi King, Research Scientist at Meta, told Medical Xpress. “In the past couple of years, major progress has been achieved to develop a neural prosthesis: a device, typically implanted on the motor cortex of the patients, which can be used, through AI, to control a computer interface. This possibility, however, still requires brain surgery, and is thus not without risks.”

A speech prosthetic developed by a collaborative team of Duke neuroscientists, neurosurgeons, and engineers can translate a person’s brain signals into what they’re trying to say.

Appearing Nov. 6 in the journal Nature Communications, the new technology might one day help people unable to talk due to neurological disorders regain the ability to communicate through a brain-computer interface.

“There are many patients who suffer from debilitating motor disorders, like ALS (amyotrophic lateral sclerosis) or locked-in syndrome, that can impair their ability to speak,” said Gregory Cogan, Ph.D., a professor of neurology at Duke University’s School of Medicine and one of the lead researchers involved in the project. “But the current tools available to allow them to communicate are generally very slow and cumbersome.”

The brain-computer interface (BCI) space continues to rise in notoriety, and a number of players are throwing their hats in the ring.

Such technologies could enable users to control a computer with their brain, or even go beyond that. Countless immobile people someday could control a mouse cursor, keyboard, mobile device/tablet, wheelchair or prosthetic device by only thinking.

Big names have already established their presence in the space. Elon Musk’s Neuralink continues to make headway, while Bill Gates-and Jeff Bezos-backed Synchron has an innovative catheter-delivered implant. Blackrock Neurotech, which has a next-generation BCI, has been implanting its Utah Array in patients since 2004.

👉For business inquiries: [email protected].
✅ Instagram: https://www.instagram.com/pro_robots.

DARPA: robots and technologies for the future management of advanced US research. DARPA military robots. DARPA battle robots. Military technologies DARPA. Battle robots of the future. Technologies of the future in the US Army.

0:00 Introduction.
01:03 DARPA mission.
01:30 Project ARPANET
02:09 First “smart machine” or robot.
03:05 The first self-driving vehicles and the first Boston Dynamics robot.
03:31 DARPA robot racing.
04:08 First Boston Dynamics Big Dog four-legged robot.
04:43 Energy Autonomous Tactical Robot Program.
05:00 Engineering Living Materials Program.
05:45 Spy Beetles — Hybrid Insect Micro-Electro-Mechanical Systems.
06:03 Robot Worm — Project Underminer.
06:23 DARPA — The Systems-Based Neurotechnology for Emerging Therapies.
06:57 Robotic pilots with artificial intelligence.
07:30 Artificial Intelligence Combat Air System — Air Combat Evolution.
08:14 UNcrewed Long Range Ships — Sea Train.
09:24 Project OFFSET
10:15 Project Squad X
10:47 Battle of human robots on DARPA Robotics Challenge.

Defense Advanced Research Projects Agency, abbreviated DARPA, or the Office of Advanced Research Projects of the U.S. Department of Defense, was established in 1958, almost immediately after the launch of the USSR Sputnik-1. The realization that the Soviets were about to launch into space not only satellites, but also missiles, greatly cheered up the government of the United States. The result was the creation of a unique agency with a huge budget, which could be spent at its own discretion. Watch a selection of the most unexpected, strange and advanced projects in the field of technology and artificial intelligence DARPA in one video!

A speech prosthetic developed by a collaborative team of Duke neuroscientists, neurosurgeons, and engineers can translate a person’s brain signals into what they’re trying to say.

  • A pioneering speech prosthetic translates brain signals into speech, aiming to assist those with speech-affecting neurological disorders.
  • The device employs a high-density sensor array to capture brain activity with unprecedented detail.