Toggle light / dark theme

NASA’s Fermi Telescope has looked at the gamma-ray emission of M31, the Andromeda Galaxy, and discovered the largest fraction of this powerful radiation comes from the core of the galaxy, very much like in our own Milky Way. The international team of researchers has considered this signature as potential indirect evidence of dark matter.

Some theoretical models predict gamma-ray emissions when dark matter particles interact with each other. Dark matter doesn’t like interacting at all, it doesn’t form clumps or clouds, so these gamma-ray signals might only happen in dense regions, like at the core of galaxies.

“We expect dark matter to accumulate in the innermost regions of the Milky Way and other galaxies, which is why finding such a compact signal is very exciting,” said lead scientist Pierrick Martin, an astrophysicist at the National Center for Scientific Research and the Research Institute in Astrophysics and Planetology in Toulouse, France, in a statement. “M31 will be a key to understanding what this means for both Andromeda and the Milky Way.”

Read more

Twenty years after the project began, scientists think they are now just weeks away from receiving their first picture of a black hole.

The numbers behind the creation of the Event Horizon Telescope (EHT) are mind boggling enough, let alone the thought of what it might see on April 5 when it’s trained on Sagittarius A*, the supermassive black hole at the centre of our galaxy.

It’s 26,000 light years from Earth. Even though its “edge” is 20-odd million kilometres across, EHT team members say seeing it is still like trying to pinpoint a grapefruit on the Moon.

Read more

Black holes are among the most fascinating objects in the known Universe. But despite the fact that they’re suspected to lurk at the centre of most galaxies, the reality is that no one has ever been able to actually photograph one.

That’s because black holes, as their name implies, are very, very dark. They’re so massive that they irreversibly consume everything that crosses their event horizon, including light, making them impossible to photograph. But that could be about to change, when a new telescope network switches on in April this year.

Called the Event Horizon Telescope, the new device is made up of a network of radio receivers located across the planet, including at the South Pole, in the US, Chile, and the French alps.

Read more

The Universe as we know it is made up of a continuum of space and time — a space-time fabric that’s curved by massive objects such as stars and black holes, and which dictates the movement of matter.

Thanks to Einstein’s gravitational waves, we know disturbances can propagate through both space and time. But what’s less understood is exactly how that happens when properties of the fabric is continuously shifting.

That could soon be about to change. Researchers have just come up with a brand new mathematical framework that could finally explain how disturbances move through a dynamic space-time fabric — a concept known as ‘field patterns’.

Read more

Quest to settle riddle over Einstein’s dark energy theory may soon be over

Saving energy is just as important as finding new and sustainable sources. By reducing the demand we reduce the energy and storage needed in the first place.

This is a first step in creating the tools needed to design and engineer low energy electronics. Cell Phones that last for weeks on a single charge and computers and servers using micro watts. However you will still need a lot of energy to drive screens and interface devices.

Read more

Theoretical physicists and astrophysicists, investigating irregularities in the cosmic microwave background (the ‘afterglow’ of the Big Bang), have found that there is substantial evidence of our universe being a vast and complex hologram. A UK, Canadian and Italian study has provided what researchers believe is the first observational evidence supporting a holographic explanation of the universe. The researchers from the University of Southampton (UK), University of Waterloo (Canada), Perimeter Institute (Canada), INFN, Lecce (Italy) and the University of Salento (Italy) have published their findings in the journal Physical Review Letters.

Read more

Oh, there will be many things come together for all of us when we begin further expanding and advancing our work on quantum especially in our work with Quantum parallel states, as well as the work on both AI and Synbio on QC. Next 3 to 5 yrs are truly going to change a lot of things in science and technology.


British scientists have taken the first step towards building a real-life version of Deep Thought, the supercomputer programmed to solve the “ultimate question of life, the universe, and everything” in Douglas Adams’s The Hitchhiker’s Guide To The Galaxy. The team has drawn up the first blueprint for a giant quantum computer, a device capable of rapidly solving problems that would take an ordinary computer billions of years to answer.

The ground-breaking modular design could theoretically pave the way to a machine as large as a football field with undreamed of levels of computing power.

University of Sussex researchers plan to unveil a proof-of-concept early prototype within two years.

Read more

As strange as it may sound, the universe actually may be a hologram, according to a recent study published in the journal Physical Review Letters.

Despite our knowledge of the universe, cosmologists have never been able to agree on a single unified model. This is because many current versions describe the cosmos with either general relativity or quantum theory, and neither of those work well together.

In an attempt to bridge this gap, a team of researchers from Canada, England, and the United States, argued that a holographic explanation of the universe could provide a set model, UPI reports. This is because it is able to account for irregularities in the echo of thermal energy leftover from the Big Bang, known as the cosmic microwave background.

Read more