Toggle light / dark theme

According to a CIA document declassified on 08/07/2000 titled “Coordinate Remote Viewing (CRV) Technology 1981–1983,” submitted to the organization August 4 of 1983, coordinate remote viewing “utilized through the methodologies that have been developed…works with remarkable precision,” but the individuals who submitted it admitted that they were “unable to explain in conventional terms why it is that the co-ordinate serves as a stimulus in the manner it does.” Nevertheless, they were convinced that David Bohm’s model of quantum mechanics provided a potentially plausible explanatory hypothesis for the mechanisms that make it possible.

David Bohm was a controversial yet brilliant luminary in physics who argued that the entirety of the cosmos is populated with quantum black holes that lead from the “explicate order” of spacetime to a realm that transcends space and time which he referred to as the “implicate order.” These black holes were termed “holospheres,” and hypothesized as the mechanism which connects the implicate order to the explicate order. From the perspective of the remote viewer, it is possible that the signal line we acquire is mediated by these holospheres, which connects us with an implicate order that is conceptually more or less identical to the Eastern concept of “Akasha” or the “Akashic records,” as articulated in the work of writers such as Swami Vivekananda.

At the center of our galaxy lies Sgr A — a supermassive black hole. With over 4 million times the Sun’s mass, you can see why it gets that moniker.

One reason we know its mass is that there’s a cluster of young, luminous stars orbiting around it. These are called S stars, and they form a group around the black hole about a quarter of a light year across — a few trillion kilometers. One of these stars, S2, has an elliptical orbit that takes it to a distance of just 16 billion kilometers from the black hole as it travels on its elliptical orbit. Until recently, that star had the closest encounter we knew of.