Toggle light / dark theme

VR can soon become perceptually indistinguishable from the physical reality, even superior in many practical ways, and any artificially created “imaginary” world with a logically consistent ruleset of physics would be ultrarealistic. Advanced immersive technologies incorporating quantum computing, AI, cybernetics, optogenetics and nanotech would make this a new “livable” reality within the next few decades. Can this new immersive tech help us decipher the nature of our own “b… See more.

An international team of astrophysicists from South Africa, the UK, France and the US have found large variations in the brightness of light seen from around one of the closest black holes in our Galaxy, 9,600 light-years from Earth, which they conclude is caused by a huge warp in its accretion disc.

This object, MAXI J1820+070, erupted as a new X-ray transient in March 2018 and was discovered by a Japanese X-ray telescope onboard the International Space Station. These transients, systems that exhibit violent outbursts, are binary stars, consisting of a low-mass star, similar to our Sun and a much more compact object, which can be a white dwarf 0 neutron star 0 or black hole. In this case, MAXI J1820+070 contains a black hole that is at least 8 times the mass of our Sun.

The first findings have now been published in the international highly ranked journal, Monthly Notices of the Royal Astronomical Society, whose lead author is Dr. Jessymol Thomas, a Postdoctoral Research Fellow at the South African Astronomical Observatory (SAAO).

For the first time, physicists have been able to directly measure one of the ways exploding stars forge the heaviest elements in the Universe.

By probing an accelerated beam of radioactive ions, a team led by physicist Gavin Lotay of the University of Surrey in the UK observed the proton-capture process thought to occur in core-collapse supernovae.

Not only have scientists now seen how this happens in detail, the measurements are allowing us to better understand the production and abundances of mysterious isotopes called p-nuclei.

The Large Hadron Collider (LHC) sparked worldwide excitement in March as particle physicists reported tantalising evidence for new physics — potentially a new force of nature. Now, our new result, yet to be peer reviewed, from Cern’s gargantuan particle collider seems to be adding further support to the idea.

Our current best theory of particles and forces is known as the standard model, which describes everything we know about the physical stuff that makes up the world around us with unerring accuracy. The standard model is without doubt the most successful scientific theory ever written down and yet at the same time we know it must be incomplete.

Famously, it describes only three of the four fundamental forces – the electromagnetic force and strong and weak forces, leaving out gravity. It has no explanation for the dark matter that astronomy tells us dominates the universe, and cannot explain how matter survived during the big bang. Most physicists are therefore confident that there must be more cosmic ingredients yet to be discovered, and studying a variety of fundamental particles known as beauty quarks is a particularly promising way to get hints of what else might be out there.

Is there anything out there?


The concept of primordial black holes has waxed and waned in scientific circles over the decades. At first, it was a fascinating possibility. After all, the first few seconds of the big bang were pretty heady times, and there may have been large enough differences in density to generate black holes of all sorts of sizes, from microscopic to gigantic. But repeated observations have continually been unable to come up with any conclusive evidence for their existence.

And then there’s dark matter, the mysterious substance that makes up the vast bulk of matter in the cosmos. Scientists aren’t exactly sure what lies behind dark matter, and primordial black holes are a tantalizing possibility.

But if the universe is flooded with innumerable small black holes, eventually some of those black holes will find each other and merge. And our gravitational wave observatories should be sensitive enough to detect the resulting ripples in spacetime.

Low-frequency gravitational waves could unlock the secrets of the ancient universe.


But scientists still can’t detect these waves at low frequencies that are often the result of even more massive objects colliding with one another or events that took place shortly after the Big Bang.

A team of researchers from the University of Birmingham suggests combining different methods to detect ultra low-frequency gravitational waves that hold the mystery of ancient black holes and the early universe.

“idea here is not to go, ‘Yeah, look at me. I’m in space.’” Instead, he said that “the prince is missing the point. The point is these are the baby steps to show people [that] it’s very practical. You can send somebody like me up into space.” — William Shatner


William Shatner may be famous for his fictional otherworldly travels thanks to his role in the “Star Trek” universe, however, on October 13 he took a real-life trip that took him to space.

Along with three other passengers, the actor nabbed a spot on Jeff Bezos’ Blue Origin space capsule, which headed out for a flight that lasted for 11 minutes, according to CNN. While it was obviously an incredible experience for the star, not everyone was impressed.

Fellow “Star Trek” actor George Takei had a few less-than-friendly words to share about Shatner’s space flight, while even Prince William spoke out about the recent space-based trips. Talking to the BBC’s “Newscast,” he addressed whether or not he would be traveling off of our planet and responded by saying he wouldn’t.