Toggle light / dark theme

What remains are mostly neutron stars or black holes. And now, Hubble seems to have documented the instant when a supernova blinked out — implying that it captured the moment a black hole took control.

While some supernova explosions, such as SN 1,054, are violent and leave clouds of debris for thousands of years (a.k.a. nebula), the star in question seems to have exploded and then had all its gas pulled back into the black hole at the core. This may occur if the star’s core collapse is very big. Rather than exploding, the gas falls into the star’s core.

Gravitational lensing of the cosmic microwave background has been used to probe the distribution of dark matter around some of the earliest galaxies in the Universe.

Investigating the properties of galaxies is fundamental to uncovering the still-unknown nature of the dominant forms of mass and energy in the Universe: dark matter and dark energy. Dark matter resides in “halos” surrounding galaxies, and information on the evolution of this invisible substance can be obtained by examining galaxies over a wide range of cosmic time. But observing distant galaxies—those at high redshifts—poses a challenge for astronomers because these objects look very dim. Fortunately, there is another way to probe the dark matter around such galaxies: via the imprint it leaves on the pattern of cosmic microwave background (CMB) temperature fluctuations through gravitational lensing (Fig. 1).

Peer long enough into the heavens, and the Universe starts to resemble a city at night. Galaxies take on characteristics of streetlamps cluttering up neighborhoods of dark matter, linked by highways of gas that run along the shores of intergalactic nothingness.

This map of the Universe was preordained, laid out in the tiniest of shivers of quantum physics moments after the Big Bang launched into an expansion of space and time some 13.8 billion years ago.

Yet exactly what those fluctuations were, and how they set in motion the physics that would see atoms pool into the massive cosmic structures we see today is still far from clear.